197 research outputs found

    Fault Detection and Isolation of Nonlinear Systems with Generalized Hamiltonian Representation

    Get PDF
    The problem of fault diagnosis in a class of nonlinear system is considered. Systems that can be written in the so‐called Generalized Hamiltonian Representation (which is equivalent to an Euler‐Lagrange representation) are studied, and a model‐based observer approach for this class of systems is developed. The main advantage of the proposed approach is the facility to design the required observers, which take advantage of the system structure given by the Hamitonian representation. In order to show the proposed schema, a model of a permanent magnet synchronous machine is revised and the fault diagnosis schema presented. Simulation results confirm the effectivity of the proposed schema

    Aeronautical Engineering: A Continuing Bibliography with Indexes (supplement 194)

    Get PDF
    This bibliography lists 369 reports, articles and other documents introduced into the NASA scientific and technical information system in November 1985

    Numerical optimal control with applications in aerospace

    Get PDF
    This thesis explores various computational aspects of solving nonlinear, continuous-time dynamic optimization problems (DOPs) numerically. Firstly, a direct transcription method for solving DOPs is proposed, named the integrated residual method (IRM). Instead of forcing the dynamic constraints to be satisfied only at a selected number of points as in direct collocation, this new approach alternates between minimizing and constraining the squared norm of the dynamic constraint residuals integrated along the whole solution trajectories. The method is capable of obtaining solutions of higher accuracy for the same mesh compared to direct collocation methods, enabling a flexible trade-off between solution accuracy and optimality, and providing reliable solutions for challenging problems, including those with singular arcs and high-index differential-algebraic equations. A number of techniques have also been proposed in this work for efficient numerical solution of large scale and challenging DOPs. A general approach for direct implementation of rate constraints on the discretization mesh is proposed. Unlike conventional approaches that may lead to singular control arcs, the solution of this on-mesh implementation has better numerical properties, while achieving computational speedups. Another development is related to the handling of inactive constraints, which do not contribute to the solution of DOPs, but increase the problem size and burden the numerical computations. A strategy to systematically remove the inactive and redundant constraints under a mesh refinement framework is proposed. The last part of this work focuses on the use of DOPs in aerospace applications, with a number of topics studied. Using example scenarios of intercontinental flights, the benefits of formulating DOPs directly according to problem specifications are demonstrated, with notable savings in fuel usage. The numerical challenges with direct collocation are also identified, with the IRM obtaining solutions of higher accuracy, and at the same time suppressing the singular arc fluctuations.Open Acces

    Aeronautical engineering: A continuing bibliography with indexes (supplement 271)

    Get PDF
    This bibliography lists 666 reports, articles, and other documents introduced into the NASA scientific and technical information system in October, 1991. Subject coverage includes design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Aeronautical engineering: A continuing bibliography with indexes (supplement 322)

    Get PDF
    This bibliography lists 719 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Aeronautical engineering: A continuing bibliography with indexes (supplement 239)

    Get PDF
    This bibliography lists 454 reports, articles, and other documents introduced into the NASA scientific and technical information system in April, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Aeronautical engineering: A continuing bibliography with indexes (supplement 276)

    Get PDF
    This bibliography lists 705 reports, articles, and other documents introduced into the NASA scientific and technical information system in Feb. 1992. Subject coverage includes: design, construction, and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 248)

    Get PDF
    This publication is a cumulative index to the abstracts contained in Supplements 236 through 247 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included -- subject, personal author, corporate source, foreign technology, contract number, report number and accession number

    Autonomous Trajectory Planning and Guidance Control for Launch Vehicles

    Get PDF
    This open access book highlights the autonomous and intelligent flight control of future launch vehicles for improving flight autonomy to plan ascent and descent trajectories onboard, and autonomously handle unexpected events or failures during the flight. Since the beginning of the twenty-first century, space launch activities worldwide have grown vigorously. Meanwhile, commercial launches also account for the booming trend. Unfortunately, the risk of space launches still exists and is gradually increasing in line with the rapidly rising launch activities and commercial rockets. In the history of space launches, propulsion and control systems are the two main contributors to launch failures. With the development of information technologies, the increase of the functional density of hardware products, the application of redundant or fault-tolerant solutions, and the improvement of the testability of avionics, the launch losses caused by control systems exhibit a downward trend, and the failures induced by propulsion systems become the focus of attention. Under these failures, the autonomous planning and guidance control may save the missions. This book focuses on the latest progress of relevant projects and academic studies of autonomous guidance, especially on some advanced methods which can be potentially real-time implemented in the future control system of launch vehicles. In Chapter 1, the prospect and technical challenges are summarized by reviewing the development of launch vehicles. Chapters 2 to 4 mainly focus on the flight in the ascent phase, in which the autonomous guidance is mainly reflected in the online planning. Chapters 5 and 6 mainly discuss the powered descent guidance technologies. Finally, since aerodynamic uncertainties exert a significant impact on the performance of the ascent / landing guidance control systems, the estimation of aerodynamic parameters, which are helpful to improve flight autonomy, is discussed in Chapter 7. The book serves as a valuable reference for researchers and engineers working on launch vehicles. It is also a timely source of information for graduate students interested in the subject
    corecore