52 research outputs found

    An Introduction to Combinatorics via Cayley\u27s Theorem

    Get PDF
    In this paper, we explore some of the methods that are often used to solve combinatorial problems by proving Cayley’s theorem on trees in multiple ways. The intended audience of this paper is undergraduate and graduate mathematics students with little to no experience in combinatorics. This paper could also be used as a supplementary text for an undergraduate combinatorics course

    Bijections for Baxter Families and Related Objects

    Get PDF
    The Baxter number can be written as Bn=∑0nΘk,n−k−1B_n = \sum_0^n \Theta_{k,n-k-1}. These numbers have first appeared in the enumeration of so-called Baxter permutations; BnB_n is the number of Baxter permutations of size nn, and Θk,l\Theta_{k,l} is the number of Baxter permutations with kk descents and ll rises. With a series of bijections we identify several families of combinatorial objects counted by the numbers Θk,l\Theta_{k,l}. Apart from Baxter permutations, these include plane bipolar orientations with k+2k+2 vertices and l+2l+2 faces, 2-orientations of planar quadrangulations with k+2k+2 white and l+2l+2 black vertices, certain pairs of binary trees with k+1k+1 left and l+1l+1 right leaves, and a family of triples of non-intersecting lattice paths. This last family allows us to determine the value of Θk,l\Theta_{k,l} as an application of the lemma of Gessel and Viennot. The approach also allows us to count certain other subfamilies, e.g., alternating Baxter permutations, objects with symmetries and, via a bijection with a class of plan bipolar orientations also Schnyder woods of triangulations, which are known to be in bijection with 3-orientations.Comment: 31 pages, 22 figures, submitted to JCT

    Path Tableaux and the Combinatorics of the Immanant Function

    Get PDF
    Immanants are a generalization of the well-studied determinant and permanent. Although the combinatorial interpretations for the determinant and permanent have been studied in excess, there remain few combinatorial interpretations for the immanant. The main objective of this thesis is to consider the immanant, and its possible combinatorial interpretations, in terms of recursive structures on the character. This thesis presents a comprehensive view of previous interpretations of immanants. Furthermore, it discusses algebraic techniques that may be used to investigate further into the combinatorial aspects of the immanant. We consider the Temperley-Lieb algebra and the class of immanants over the elements of this algebra. Combinatorial tools including the Temperley-Lieb algebra and Kauffman diagrams will be used in a number of interpretations. In particular, we extend some results for the permanent and determinant based on the RR-weighted planar network construction, where RR is a convenient ring, by Clearman, Shelton, and Skandera. This thesis also presents some cases in which this construction cannot be extended. Finally, we present some extensions to combinatorial interpretations on certain classes of tableaux, as well as certain classes of matrices

    Trees and Matchings

    Full text link
    In this article, Temperley's bijection between spanning trees of the square grid on the one hand, and perfect matchings (also known as dimer coverings) of the square grid on the other, is extended to the setting of general planar directed (and undirected) graphs, where edges carry nonnegative weights that induce a weighting on the set of spanning trees. We show that the weighted, directed spanning trees (often called arborescences) of any planar graph G can be put into a one-to-one weight-preserving correspondence with the perfect matchings of a related planar graph H. One special case of this result is a bijection between perfect matchings of the hexagonal honeycomb lattice and directed spanning trees of a triangular lattice. Another special case gives a correspondence between perfect matchings of the ``square-octagon'' lattice and directed weighted spanning trees on a directed weighted version of the cartesian lattice. In conjunction with results of Kenyon, our main theorem allows us to compute the measures of all cylinder events for random spanning trees on any (directed, weighted) planar graph. Conversely, in cases where the perfect matching model arises from a tree model, Wilson's algorithm allows us to quickly generate random samples of perfect matchings.Comment: 32 pages, 19 figures (minor revisions from version 1

    Catalan's intervals and realizers of triangulations

    Full text link
    The Stanley lattice, Tamari lattice and Kreweras lattice are three remarkable orders defined on the set of Catalan objects of a given size. These lattices are ordered by inclusion: the Stanley lattice is an extension of the Tamari lattice which is an extension of the Kreweras lattice. The Stanley order can be defined on the set of Dyck paths of size nn as the relation of \emph{being above}. Hence, intervals in the Stanley lattice are pairs of non-crossing Dyck paths. In a former article, the second author defined a bijection Φ\Phi between pairs of non-crossing Dyck paths and the realizers of triangulations (or Schnyder woods). We give a simpler description of the bijection Φ\Phi. Then, we study the restriction of Φ\Phi to Tamari's and Kreweras' intervals. We prove that Φ\Phi induces a bijection between Tamari intervals and minimal realizers. This gives a bijection between Tamari intervals and triangulations. We also prove that Φ\Phi induces a bijection between Kreweras intervals and the (unique) realizers of stack triangulations. Thus, Φ\Phi induces a bijection between Kreweras intervals and stack triangulations which are known to be in bijection with ternary trees.Comment: 22 page

    The two periodic Aztec diamond and matrix valued orthogonal polynomials

    Full text link
    We analyze domino tilings of the two-periodic Aztec diamond by means of matrix valued orthogonal polynomials that we obtain from a reformulation of the Aztec diamond as a non-intersecting path model with periodic transition matrices. In a more general framework we express the correlation kernel for the underlying determinantal point process as a double contour integral that contains the reproducing kernel of matrix valued orthogonal polynomials. We use the Riemann-Hilbert problem to simplify this formula for the case of the two-periodic Aztec diamond. In the large size limit we recover the three phases of the model known as solid, liquid and gas. We describe fine asymptotics for the gas phase and at the cusp points of the liquid-gas boundary, thereby complementing and extending results of Chhita and Johansson.Comment: 80 pages, 20 figures; This is an extended version of the paper that is accepted for publication in the Journal of the EM
    • …
    corecore