21,421 research outputs found

    Knowledge Graph semantic enhancement of input data for improving AI

    Full text link
    Intelligent systems designed using machine learning algorithms require a large number of labeled data. Background knowledge provides complementary, real world factual information that can augment the limited labeled data to train a machine learning algorithm. The term Knowledge Graph (KG) is in vogue as for many practical applications, it is convenient and useful to organize this background knowledge in the form of a graph. Recent academic research and implemented industrial intelligent systems have shown promising performance for machine learning algorithms that combine training data with a knowledge graph. In this article, we discuss the use of relevant KGs to enhance input data for two applications that use machine learning -- recommendation and community detection. The KG improves both accuracy and explainability

    General Purpose Textual Sentiment Analysis and Emotion Detection Tools

    Get PDF
    Textual sentiment analysis and emotion detection consists in retrieving the sentiment or emotion carried by a text or document. This task can be useful in many domains: opinion mining, prediction, feedbacks, etc. However, building a general purpose tool for doing sentiment analysis and emotion detection raises a number of issues, theoretical issues like the dependence to the domain or to the language but also pratical issues like the emotion representation for interoperability. In this paper we present our sentiment/emotion analysis tools, the way we propose to circumvent the di culties and the applications they are used for.Comment: Workshop on Emotion and Computing (2013

    Simplified Neural Unsupervised Domain Adaptation

    Full text link
    Unsupervised domain adaptation (UDA) is the task of modifying a statistical model trained on labeled data from a source domain to achieve better performance on data from a target domain, with access to only unlabeled data in the target domain. Existing state-of-the-art UDA approaches use neural networks to learn representations that can predict the values of subset of important features called "pivot features." In this work, we show that it is possible to improve on these methods by jointly training the representation learner with the task learner, and examine the importance of existing pivot selection methods.Comment: To be presented at NAACL 201
    • …
    corecore