1,787 research outputs found

    A Flexible Generative Framework for Graph-based Semi-supervised Learning

    Full text link
    We consider a family of problems that are concerned about making predictions for the majority of unlabeled, graph-structured data samples based on a small proportion of labeled samples. Relational information among the data samples, often encoded in the graph/network structure, is shown to be helpful for these semi-supervised learning tasks. However, conventional graph-based regularization methods and recent graph neural networks do not fully leverage the interrelations between the features, the graph, and the labels. In this work, we propose a flexible generative framework for graph-based semi-supervised learning, which approaches the joint distribution of the node features, labels, and the graph structure. Borrowing insights from random graph models in network science literature, this joint distribution can be instantiated using various distribution families. For the inference of missing labels, we exploit recent advances of scalable variational inference techniques to approximate the Bayesian posterior. We conduct thorough experiments on benchmark datasets for graph-based semi-supervised learning. Results show that the proposed methods outperform the state-of-the-art models in most settings.Comment: NeurIPS 201

    Learning Discrete Structures for Graph Neural Networks

    Full text link
    Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.Comment: ICML 2019, code at https://github.com/lucfra/LDS - Revision of Sec.

    Graph Adversarial Training: Dynamically Regularizing Based on Graph Structure

    Full text link
    Recent efforts show that neural networks are vulnerable to small but intentional perturbations on input features in visual classification tasks. Due to the additional consideration of connections between examples (\eg articles with citation link tend to be in the same class), graph neural networks could be more sensitive to the perturbations, since the perturbations from connected examples exacerbate the impact on a target example. Adversarial Training (AT), a dynamic regularization technique, can resist the worst-case perturbations on input features and is a promising choice to improve model robustness and generalization. However, existing AT methods focus on standard classification, being less effective when training models on graph since it does not model the impact from connected examples. In this work, we explore adversarial training on graph, aiming to improve the robustness and generalization of models learned on graph. We propose Graph Adversarial Training (GraphAT), which takes the impact from connected examples into account when learning to construct and resist perturbations. We give a general formulation of GraphAT, which can be seen as a dynamic regularization scheme based on the graph structure. To demonstrate the utility of GraphAT, we employ it on a state-of-the-art graph neural network model --- Graph Convolutional Network (GCN). We conduct experiments on two citation graphs (Citeseer and Cora) and a knowledge graph (NELL), verifying the effectiveness of GraphAT which outperforms normal training on GCN by 4.51% in node classification accuracy. Codes are available via: https://github.com/fulifeng/GraphAT.Comment: Accepted by TKD

    Learning Graph Embedding with Adversarial Training Methods

    Full text link
    Graph embedding aims to transfer a graph into vectors to facilitate subsequent graph analytics tasks like link prediction and graph clustering. Most approaches on graph embedding focus on preserving the graph structure or minimizing the reconstruction errors for graph data. They have mostly overlooked the embedding distribution of the latent codes, which unfortunately may lead to inferior representation in many cases. In this paper, we present a novel adversarially regularized framework for graph embedding. By employing the graph convolutional network as an encoder, our framework embeds the topological information and node content into a vector representation, from which a graph decoder is further built to reconstruct the input graph. The adversarial training principle is applied to enforce our latent codes to match a prior Gaussian or Uniform distribution. Based on this framework, we derive two variants of adversarial models, the adversarially regularized graph autoencoder (ARGA) and its variational version, adversarially regularized variational graph autoencoder (ARVGA), to learn the graph embedding effectively. We also exploit other potential variations of ARGA and ARVGA to get a deeper understanding on our designs. Experimental results compared among twelve algorithms for link prediction and twenty algorithms for graph clustering validate our solutions.Comment: To appear in IEEE Transactions on Cybernetics. arXiv admin note: substantial text overlap with arXiv:1802.0440

    Manifold regularization in structured output space for semi-supervised structured output prediction

    Full text link
    Structured output prediction aims to learn a predictor to predict a structured output from a input data vector. The structured outputs include vector, tree, sequence, etc. We usually assume that we have a training set of input-output pairs to train the predictor. However, in many real-world appli- cations, it is difficult to obtain the output for a input, thus for many training input data points, the structured outputs are missing. In this paper, we dis- cuss how to learn from a training set composed of some input-output pairs, and some input data points without outputs. This problem is called semi- supervised structured output prediction. We propose a novel method for this problem by constructing a nearest neighbor graph from the input space to present the manifold structure, and using it to regularize the structured out- put space directly. We define a slack structured output for each training data point, and proposed to predict it by learning a structured output predictor. The learning of both slack structured outputs and the predictor are unified within one single minimization problem. In this problem, we propose to mini- mize the structured loss between the slack structured outputs of neighboring data points, and the prediction error measured by the structured loss. The problem is optimized by an iterative algorithm. Experiment results over three benchmark data sets show its advantage

    Collective Semi-Supervised Learning for User Profiling in Social Media

    Full text link
    The abundance of user-generated data in social media has incentivized the development of methods to infer the latent attributes of users, which are crucially useful for personalization, advertising and recommendation. However, the current user profiling approaches have limited success, due to the lack of a principled way to integrate different types of social relationships of a user, and the reliance on scarcely-available labeled data in building a prediction model. In this paper, we present a novel solution termed Collective Semi-Supervised Learning (CSL), which provides a principled means to integrate different types of social relationship and unlabeled data under a unified computational framework. The joint learning from multiple relationships and unlabeled data yields a computationally sound and accurate approach to model user attributes in social media. Extensive experiments using Twitter data have demonstrated the efficacy of our CSL approach in inferring user attributes such as account type and marital status. We also show how CSL can be used to determine important user features, and to make inference on a larger user population

    Generalizable Adversarial Attacks with Latent Variable Perturbation Modelling

    Full text link
    Adversarial attacks on deep neural networks traditionally rely on a constrained optimization paradigm, where an optimization procedure is used to obtain a single adversarial perturbation for a given input example. In this work we frame the problem as learning a distribution of adversarial perturbations, enabling us to generate diverse adversarial distributions given an unperturbed input. We show that this framework is domain-agnostic in that the same framework can be employed to attack different input domains with minimal modification. Across three diverse domains---images, text, and graphs---our approach generates whitebox attacks with success rates that are competitive with or superior to existing approaches, with a new state-of-the-art achieved in the graph domain. Finally, we demonstrate that our framework can efficiently generate a diverse set of attacks for a single given input, and is even capable of attacking \textit{unseen} test instances in a zero-shot manner, exhibiting attack generalization

    Label Prediction Framework for Semi-Supervised Cross-Modal Retrieval

    Full text link
    Cross-modal data matching refers to retrieval of data from one modality, when given a query from another modality. In general, supervised algorithms achieve better retrieval performance compared to their unsupervised counterpart, as they can learn better representative features by leveraging the available label information. However, this comes at the cost of requiring huge amount of labeled examples, which may not always be available. In this work, we propose a novel framework in a semi-supervised setting, which can predict the labels of the unlabeled data using complementary information from different modalities. The proposed framework can be used as an add-on with any baseline crossmodal algorithm to give significant performance improvement, even in case of limited labeled data. Finally, we analyze the challenging scenario where the unlabeled examples can even come from classes not in the training data and evaluate the performance of our algorithm under such setting. Extensive evaluation using several baseline algorithms across three different datasets shows the effectiveness of our label prediction framework.Comment: 12 pages, 3 tables, 2 figures, 1 algorithm flowchar

    Neural Graph Machines: Learning Neural Networks Using Graphs

    Full text link
    Label propagation is a powerful and flexible semi-supervised learning technique on graphs. Neural networks, on the other hand, have proven track records in many supervised learning tasks. In this work, we propose a training framework with a graph-regularised objective, namely "Neural Graph Machines", that can combine the power of neural networks and label propagation. This work generalises previous literature on graph-augmented training of neural networks, enabling it to be applied to multiple neural architectures (Feed-forward NNs, CNNs and LSTM RNNs) and a wide range of graphs. The new objective allows the neural networks to harness both labeled and unlabeled data by: (a) allowing the network to train using labeled data as in the supervised setting, (b) biasing the network to learn similar hidden representations for neighboring nodes on a graph, in the same vein as label propagation. Such architectures with the proposed objective can be trained efficiently using stochastic gradient descent and scaled to large graphs, with a runtime that is linear in the number of edges. The proposed joint training approach convincingly outperforms many existing methods on a wide range of tasks (multi-label classification on social graphs, news categorization, document classification and semantic intent classification), with multiple forms of graph inputs (including graphs with and without node-level features) and using different types of neural networks.Comment: 9 page

    Machine Learning with World Knowledge: The Position and Survey

    Full text link
    Machine learning has become pervasive in multiple domains, impacting a wide variety of applications, such as knowledge discovery and data mining, natural language processing, information retrieval, computer vision, social and health informatics, ubiquitous computing, etc. Two essential problems of machine learning are how to generate features and how to acquire labels for machines to learn. Particularly, labeling large amount of data for each domain-specific problem can be very time consuming and costly. It has become a key obstacle in making learning protocols realistic in applications. In this paper, we will discuss how to use the existing general-purpose world knowledge to enhance machine learning processes, by enriching the features or reducing the labeling work. We start from the comparison of world knowledge with domain-specific knowledge, and then introduce three key problems in using world knowledge in learning processes, i.e., explicit and implicit feature representation, inference for knowledge linking and disambiguation, and learning with direct or indirect supervision. Finally we discuss the future directions of this research topic
    • …
    corecore