651 research outputs found

    Neural Methods for Effective, Efficient, and Exposure-Aware Information Retrieval

    Get PDF
    Neural networks with deep architectures have demonstrated significant performance improvements in computer vision, speech recognition, and natural language processing. The challenges in information retrieval (IR), however, are different from these other application areas. A common form of IR involves ranking of documents--or short passages--in response to keyword-based queries. Effective IR systems must deal with query-document vocabulary mismatch problem, by modeling relationships between different query and document terms and how they indicate relevance. Models should also consider lexical matches when the query contains rare terms--such as a person's name or a product model number--not seen during training, and to avoid retrieving semantically related but irrelevant results. In many real-life IR tasks, the retrieval involves extremely large collections--such as the document index of a commercial Web search engine--containing billions of documents. Efficient IR methods should take advantage of specialized IR data structures, such as inverted index, to efficiently retrieve from large collections. Given an information need, the IR system also mediates how much exposure an information artifact receives by deciding whether it should be displayed, and where it should be positioned, among other results. Exposure-aware IR systems may optimize for additional objectives, besides relevance, such as parity of exposure for retrieved items and content publishers. In this thesis, we present novel neural architectures and methods motivated by the specific needs and challenges of IR tasks.Comment: PhD thesis, Univ College London (2020

    Inferring User Needs and Tasks from User Interactions

    Get PDF
    The need for search often arises from a broad range of complex information needs or tasks (such as booking travel, buying a house, etc.) which lead to lengthy search processes characterised by distinct stages and goals. While existing search systems are adept at handling simple information needs, they offer limited support for tackling complex tasks. Accurate task representations could be useful in aptly placing users in the task-subtask space and enable systems to contextually target the user, provide them better query suggestions, personalization and recommendations and help in gauging satisfaction. The major focus of this thesis is to work towards task based information retrieval systems - search systems which are adept at understanding, identifying and extracting tasks as well as supporting user’s complex search task missions. This thesis focuses on two major themes: (i) developing efficient algorithms for understanding and extracting search tasks from log user and (ii) leveraging the extracted task information to better serve the user via different applications. Based on log analysis on a tera-byte scale data from a real-world search engine, detailed analysis is provided on user interactions with search engines. On the task extraction side, two bayesian non-parametric methods are proposed to extract subtasks from a complex task and to recursively extract hierarchies of tasks and subtasks. A novel coupled matrix-tensor factorization model is proposed that represents user based on their topical interests and task behaviours. Beyond personalization, the thesis demonstrates that task information provides better context to learn from and proposes a novel neural task context embedding architecture to learn query representations. Finally, the thesis examines implicit signals of user interactions and considers the problem of predicting user’s satisfaction when engaged in complex search tasks. A unified multi-view deep sequential model is proposed to make query and task level satisfaction prediction

    Modeling users interacting with smart devices

    Get PDF

    Task-based user profiling for query refinement (toque)

    Get PDF
    The information needs of search engine users vary in complexity. Some simple needs can be satisfied by using a single query, while complicated ones require a series of queries spanning a period of time. A search task, consisting of a sequence of search queries serving the same information need, can be treated as an atomic unit for modeling user’s search preferences and has been applied in improving the accuracy of search results. However, existing studies on user search tasks mainly focus on applying user’s interests in re-ranking search results. Only few studies have examined the effects of utilizing search tasks to assist users in obtaining effective queries. Moreover, fewer existing studies have examined the dynamic characteristics of user’s search interests within a search task. Furthermore, even fewer studies have examined approaches to selective personalization for candidate refined queries that are expected to benefit from its application. This study proposes a framework of modeling user’s task-based dynamic search interests to address these issues and makes the following contributions. First, task identification: a cross-session based method is proposed to discover tasks by modeling the best-link structure of queries, based on the commonly shared clicked results. A graph-based representation method is introduced to improve the effectiveness of link prediction in a query sequence. Second, dynamic task-level search interest representation: a four-tuple user profiling model is introduced to represent long- and short-term user interests extracted from search tasks and sessions. It models user’s interests at the task level to re-rank candidate queries through modules of task identification and update. Third, selective personalization: a two-step personalization algorithm is proposed to improve the rankings of candidate queries for query refinement by assessing the task dependency via exploiting a latent task space. Experimental results show that the proposed TOQUE framework contributes to an increased precision of candidate queries and thus shortened search sessions
    • …
    corecore