20 research outputs found

    A Generative Approach to Zero-Shot and Few-Shot Action Recognition

    Full text link
    We present a generative framework for zero-shot action recognition where some of the possible action classes do not occur in the training data. Our approach is based on modeling each action class using a probability distribution whose parameters are functions of the attribute vector representing that action class. In particular, we assume that the distribution parameters for any action class in the visual space can be expressed as a linear combination of a set of basis vectors where the combination weights are given by the attributes of the action class. These basis vectors can be learned solely using labeled data from the known (i.e., previously seen) action classes, and can then be used to predict the parameters of the probability distributions of unseen action classes. We consider two settings: (1) Inductive setting, where we use only the labeled examples of the seen action classes to predict the unseen action class parameters; and (2) Transductive setting which further leverages unlabeled data from the unseen action classes. Our framework also naturally extends to few-shot action recognition where a few labeled examples from unseen classes are available. Our experiments on benchmark datasets (UCF101, HMDB51 and Olympic) show significant performance improvements as compared to various baselines, in both standard zero-shot (disjoint seen and unseen classes) and generalized zero-shot learning settings.Comment: Accepted in WACV 201

    Cross-modal Hallucination for Few-shot Fine-grained Recognition

    Full text link
    State-of-the-art deep learning algorithms generally require large amounts of data for model training. Lack thereof can severely deteriorate the performance, particularly in scenarios with fine-grained boundaries between categories. To this end, we propose a multimodal approach that facilitates bridging the information gap by means of meaningful joint embeddings. Specifically, we present a benchmark that is multimodal during training (i.e. images and texts) and single-modal in testing time (i.e. images), with the associated task to utilize multimodal data in base classes (with many samples), to learn explicit visual classifiers for novel classes (with few samples). Next, we propose a framework built upon the idea of cross-modal data hallucination. In this regard, we introduce a discriminative text-conditional GAN for sample generation with a simple self-paced strategy for sample selection. We show the results of our proposed discriminative hallucinated method for 1-, 2-, and 5- shot learning on the CUB dataset, where the accuracy is improved by employing multimodal data.Comment: CVPR 2018 Workshop on Fine-Grained Visual Categorizatio

    Unified Generator-Classifier for Efficient Zero-Shot Learning

    Full text link
    Generative models have achieved state-of-the-art performance for the zero-shot learning problem, but they require re-training the classifier every time a new object category is encountered. The traditional semantic embedding approaches, though very elegant, usually do not perform at par with their generative counterparts. In this work, we propose an unified framework termed GenClass, which integrates the generator with the classifier for efficient zero-shot learning, thus combining the representative power of the generative approaches and the elegance of the embedding approaches. End-to-end training of the unified framework not only eliminates the requirement of additional classifier for new object categories as in the generative approaches, but also facilitates the generation of more discriminative and useful features. Extensive evaluation on three standard zero-shot object classification datasets, namely AWA, CUB and SUN shows the effectiveness of the proposed approach. The approach without any modification, also gives state-of-the-art performance for zero-shot action classification, thus showing its generalizability to other domains.Comment: 4 page

    Generative Model for Zero-Shot Sketch-Based Image Retrieval

    Full text link
    We present a probabilistic model for Sketch-Based Image Retrieval (SBIR) where, at retrieval time, we are given sketches from novel classes, that were not present at training time. Existing SBIR methods, most of which rely on learning class-wise correspondences between sketches and images, typically work well only for previously seen sketch classes, and result in poor retrieval performance on novel classes. To address this, we propose a generative model that learns to generate images, conditioned on a given novel class sketch. This enables us to reduce the SBIR problem to a standard image-to-image search problem. Our model is based on an inverse auto-regressive flow based variational autoencoder, with a feedback mechanism to ensure robust image generation. We evaluate our model on two very challenging datasets, Sketchy, and TU Berlin, with novel train-test split. The proposed approach significantly outperforms various baselines on both the datasets.Comment: Accepted at CVPR-Workshop 201

    Skeleton based Zero Shot Action Recognition in Joint Pose-Language Semantic Space

    Full text link
    How does one represent an action? How does one describe an action that we have never seen before? Such questions are addressed by the Zero Shot Learning paradigm, where a model is trained on only a subset of classes and is evaluated on its ability to correctly classify an example from a class it has never seen before. In this work, we present a body pose based zero shot action recognition network and demonstrate its performance on the NTU RGB-D dataset. Our model learns to jointly encapsulate visual similarities based on pose features of the action performer as well as similarities in the natural language descriptions of the unseen action class names. We demonstrate how this pose-language semantic space encodes knowledge which allows our model to correctly predict actions not seen during training

    Unifying Few- and Zero-Shot Egocentric Action Recognition

    Full text link
    Although there has been significant research in egocentric action recognition, most methods and tasks, including EPIC-KITCHENS, suppose a fixed set of action classes. Fixed-set classification is useful for benchmarking methods, but is often unrealistic in practical settings due to the compositionality of actions, resulting in a functionally infinite-cardinality label set. In this work, we explore generalization with an open set of classes by unifying two popular approaches: few- and zero-shot generalization (the latter which we reframe as cross-modal few-shot generalization). We propose a new set of splits derived from the EPIC-KITCHENS dataset that allow evaluation of open-set classification, and use these splits to show that adding a metric-learning loss to the conventional direct-alignment baseline can improve zero-shot classification by as much as 10%, while not sacrificing few-shot performance.Comment: Accepted for presentation at the EPIC@CVPR2020 worksho

    ProtoGAN: Towards Few Shot Learning for Action Recognition

    Full text link
    Few-shot learning (FSL) for action recognition is a challenging task of recognizing novel action categories which are represented by few instances in the training data. In a more generalized FSL setting (G-FSL), both seen as well as novel action categories need to be recognized. Conventional classifiers suffer due to inadequate data in FSL setting and inherent bias towards seen action categories in G-FSL setting. In this paper, we address this problem by proposing a novel ProtoGAN framework which synthesizes additional examples for novel categories by conditioning a conditional generative adversarial network with class prototype vectors. These class prototype vectors are learnt using a Class Prototype Transfer Network (CPTN) from examples of seen categories. Our synthesized examples for a novel class are semantically similar to real examples belonging to that class and is used to train a model exhibiting better generalization towards novel classes. We support our claim by performing extensive experiments on three datasets: UCF101, HMDB51 and Olympic-Sports. To the best of our knowledge, we are the first to report the results for G-FSL and provide a strong benchmark for future research. We also outperform the state-of-the-art method in FSL for all the aforementioned datasets.Comment: 9 pages, 5 tables, 2 figures. To appear in the proceedings of ICCV Workshop 201

    SL-DML: Signal Level Deep Metric Learning for Multimodal One-Shot Action Recognition

    Full text link
    Recognizing an activity with a single reference sample using metric learning approaches is a promising research field. The majority of few-shot methods focus on object recognition or face-identification. We propose a metric learning approach to reduce the action recognition problem to a nearest neighbor search in embedding space. We encode signals into images and extract features using a deep residual CNN. Using triplet loss, we learn a feature embedding. The resulting encoder transforms features into an embedding space in which closer distances encode similar actions while higher distances encode different actions. Our approach is based on a signal level formulation and remains flexible across a variety of modalities. It further outperforms the baseline on the large scale NTU RGB+D 120 dataset for the One-Shot action recognition protocol by 5.6%. With just 60% of the training data, our approach still outperforms the baseline approach by 3.7%. With 40% of the training data, our approach performs comparably well to the second follow up. Further, we show that our approach generalizes well in experiments on the UTD-MHAD dataset for inertial, skeleton and fused data and the Simitate dataset for motion capturing data. Furthermore, our inter-joint and inter-sensor experiments suggest good capabilities on previously unseen setups.Comment: 8 pages, 6 figures, 7 table

    Similarity R-C3D for Few-shot Temporal Activity Detection

    Full text link
    Many activities of interest are rare events, with only a few labeled examples available. Therefore models for temporal activity detection which are able to learn from a few examples are desirable. In this paper, we present a conceptually simple and general yet novel framework for few-shot temporal activity detection which detects the start and end time of the few-shot input activities in an untrimmed video. Our model is end-to-end trainable and can benefit from more few-shot examples. At test time, each proposal is assigned the label of the few-shot activity class corresponding to the maximum similarity score. Our Similarity R-C3D method outperforms previous work on three large-scale benchmarks for temporal activity detection (THUMOS14, ActivityNet1.2, and ActivityNet1.3 datasets) in the few-shot setting. Our code will be made available

    Revisiting Few-shot Activity Detection with Class Similarity Control

    Full text link
    Many interesting events in the real world are rare making preannotated machine learning ready videos a rarity in consequence. Thus, temporal activity detection models that are able to learn from a few examples are desirable. In this paper, we present a conceptually simple and general yet novel framework for few-shot temporal activity detection based on proposal regression which detects the start and end time of the activities in untrimmed videos. Our model is end-to-end trainable, takes into account the frame rate differences between few-shot activities and untrimmed test videos, and can benefit from additional few-shot examples. We experiment on three large scale benchmarks for temporal activity detection (ActivityNet1.2, ActivityNet1.3 and THUMOS14 datasets) in a few-shot setting. We also study the effect on performance of different amount of overlap with activities used to pretrain the video classification backbone and propose corrective measures for future works in this domain. Our code will be made available
    corecore