177 research outputs found

    A Generalized TDoA/ToA Model for ToF Positioning

    Full text link
    Many applications require positioning. Time of Flight (ToF) methods calculate distances by measuring the propagation time of signals. We present a novel ToF localization method. Our new approach works infrastructure-less, without pre-defined roles like Anchors or Tags. It generalizes existing synchronization-less Time Difference of Arrival (TDoA) and Time of Arrival (ToA) algorithms. We show how known algorithms can be derived from our new method. A major advantage of our approach is that it provides a comparable or better clock error robustness, i.e. the typical errors of crystal oscillators have negligible impact for TDoA and ToA measurements. We show that our channel usage is for most cases superior compared to the state-of-the art.Comment: Published in IEEEXplore: https://ieeexplore.ieee.org/abstract/document/891174

    Clock Error Analysis of Common Time of Flight based Positioning Methods

    Full text link
    Today, many applications such as production or rescue settings rely on highly accurate entity positioning. Advanced Time of Flight (ToF) based positioning methods provide highaccuracy localization of entities. A key challenge for ToF based positioning is to synchronize the clocks between the participating entities. This paper summarizes and analyzes ToA and TDoA methods with respect to clock error robustness. The focus is on synchronization-less methods, i.e. methods which reduce the infrastructure requirement significantly. We introduce a unified notation to survey and compare the relevant work from literature. Then we apply a clock error model and compute worst case location-accuracy errors. Our analysis reveals a superior error robustness against clock errors for so called Double-Pulse methods when applied to radio based ToF positioningComment: Published in IEEEXplore: https://ieeexplore.ieee.org/abstract/document/891177

    Experimental evaluation of a UWB-based cooperative positioning system for pedestrians in GNSS-denied environment

    Get PDF
    Cooperative positioning (CP) utilises information sharing among multiple nodes to enable positioning in Global Navigation Satellite System (GNSS)-denied environments. This paper reports the performance of a CP system for pedestrians using Ultra-Wide Band (UWB) technology in GNSS-denied environments. This data set was collected as part of a benchmarking measurement campaign carried out at the Ohio State University in October 2017. Pedestrians were equipped with a variety of sensors, including two different UWB systems, on a specially designed helmet serving as a mobile multi-sensor platform for CP. Different users were walking in stop-and-go mode along trajectories with predefined checkpoints and under various challenging environments. In the developed CP network, both Peer-to-Infrastructure (P2I) and Peer-to-Peer (P2P) measurements are used for positioning of the pedestrians. It is realised that the proposed system can achieve decimetre-level accuracies (on average, around 20 cm) in the complete absence of GNSS signals, provided that the measurements from infrastructure nodes are available and the network geometry is good. In the absence of these good conditions, the results show that the average accuracy degrades to meter level. Further, it is experimentally demonstrated that inclusion of P2P cooperative range observations further enhances the positioning accuracy and, in extreme cases when only one infrastructure measurement is available, P2P CP may reduce positioning errors by up to 95%. The complete test setup, the methodology for development, and data collection are discussed in this paper. In the next version of this system, additional observations such as the Wi-Fi, camera, and other signals of opportunity will be included

    Experimental Evaluation of a UWB-Based Cooperative Positioning System for Pedestrians in GNSS-Denied Environment

    Get PDF
    Cooperative positioning (CP) utilises information sharing among multiple nodes to enable positioning in Global Navigation Satellite System (GNSS)-denied environments. This paper reports the performance of a CP system for pedestrians using Ultra-Wide Band (UWB) technology in GNSS-denied environments. This data set was collected as part of a benchmarking measurement campaign carried out at the Ohio State University in October 2017. Pedestrians were equipped with a variety of sensors, including two different UWB systems, on a specially designed helmet serving as a mobile multi-sensor platform for CP. Different users were walking in stop-and-go mode along trajectories with predefined checkpoints and under various challenging environments. In the developed CP network, both Peer-to-Infrastructure (P2I) and Peer-to-Peer (P2P) measurements are used for positioning of the pedestrians. It is realised that the proposed system can achieve decimetre-level accuracies (on average, around 20 cm) in the complete absence of GNSS signals, provided that the measurements from infrastructure nodes are available and the network geometry is good. In the absence of these good conditions, the results show that the average accuracy degrades to meter level. Further, it is experimentally demonstrated that inclusion of P2P cooperative range observations further enhances the positioning accuracy and, in extreme cases when only one infrastructure measurement is available, P2P CP may reduce positioning errors by up to 95%. The complete test setup, the methodology for development, and data collection are discussed in this paper. In the next version of this system, additional observations such as the Wi-Fi, camera, and other signals of opportunity will be included

    Acoustic system for ground truth underwater positioning in DEEC's test tank

    Get PDF
    Desenvolvimento de um sistema acústico de posicionamento capaz de estimar, em tempo real, a posição tridimensional de objetos dentro do tanque de ensaios do DEEC.A obtenção desta posição "ground truth" é fundamental para o apoio a ensaios de sistemas de navegação subaquáticos e para o controlo de veículos robóticos tais como AUV's e ROV's.Development of an acoustic positioning system, capable of estimating, in real time, the three-dimensional position of an object inside the DEEC's test tank. The ability to obtain this ground truth position is fundamental to support tests of underwater navigation systems, and to the control of robotic vehicles such as AUV's and ROV's

    Real-Time Passive Acoustic Tracking of Underwater Vehicles

    Get PDF
    Com o crescente interesse na exploração oceânica, sistemas de localização subaquática têm sido largamente usados pela industria e comunidade cientifica. Neste trabalho foi desenvolvido um sistema de localização acústica passiva em tempo real, com uma topologia idêntica ao do ultra-short baseline. Este sistema calcula a posição a duas dimensões de uma fonte acústica submersa conhecida, com base na integração de medições da direção do som ao longo do tempo. O ângulo de chegada da onda sonora é estimado pelo atraso de fase entre os sinais adquiridos por dois hidrofones colocados perto um do outro. Esta configuração permite atenuar as diferenças nos sinais recebidos devidas a perturbações do canal acústico subaquático. Este algoritmo foi implementado em tempo real numa plataforma SoC reconfigurável (CPU ARM + FPGA), e validado com ensaios de campo realizados no mar

    A Survey of Sound Source Localization Methods in Wireless Acoustic Sensor Networks

    Get PDF
    Wireless acoustic sensor networks (WASNs) are formed by a distributed group of acoustic-sensing devices featuring audio playing and recording capabilities. Current mobile computing platforms offer great possibilities for the design of audio-related applications involving acoustic-sensing nodes. In this context, acoustic source localization is one of the application domains that have attracted the most attention of the research community along the last decades. In general terms, the localization of acoustic sources can be achieved by studying energy and temporal and/or directional features from the incoming sound at different microphones and using a suitable model that relates those features with the spatial location of the source (or sources) of interest. This paper reviews common approaches for source localization in WASNs that are focused on different types of acoustic features, namely, the energy of the incoming signals, their time of arrival (TOA) or time difference of arrival (TDOA), the direction of arrival (DOA), and the steered response power (SRP) resulting from combining multiple microphone signals. Additionally, we discuss methods not only aimed at localizing acoustic sources but also designed to locate the nodes themselves in the network. Finally, we discuss current challenges and frontiers in this field

    Localization using Distance Geometry : Minimal Solvers and Robust Methods for Sensor Network Self-Calibration

    Get PDF
    In this thesis, we focus on the problem of estimating receiver and sender node positions given some form of distance measurements between them. This kind of localization problem has several applications, e.g., global and indoor positioning, sensor network calibration, molecular conformations, data visualization, graph embedding, and robot kinematics. More concretely, this thesis makes contributions in three different areas.First, we present a method for simultaneously registering and merging maps. The merging problem occurs when multiple maps of an area have been constructed and need to be combined into a single representation. If there are no absolute references and the maps are in different coordinate systems, they also need to be registered. In the second part, we construct robust methods for sensor network self-calibration using both Time of Arrival (TOA) and Time Difference of Arrival (TDOA) measurements. One of the difficulties is that corrupt measurements, so-called outliers, are present and should be excluded from the model fitting. To achieve this, we use hypothesis-and-test frameworks together with minimal solvers, resulting in methods that are robust to noise, outliers, and missing data. Several new minimal solvers are introduced to accommodate a range of receiver and sender configurations in 2D and 3D space. These solvers are formulated as polynomial equation systems which are solvedusing methods from algebraic geometry.In the third part, we focus specifically on the problems of trilateration and multilateration, and we present a method that approximates the Maximum Likelihood (ML) estimator for different noise distributions. The proposed approach reduces to an eigendecomposition problem for which there are good solvers. This results in a method that is faster and more numerically stable than the state-of-the-art, while still being easy to implement. Furthermore, we present a robust trilateration method that incorporates a motion model. This enables the removal of outliers in the distance measurements at the same time as drift in the motion model is canceled
    corecore