2 research outputs found

    Low Complexity Adaptive Transmission Scheme for Cooperative Networks with Decode-and-Forward Relay

    No full text
    In this paper, we consider adaptive quadratic amplitude modulation (QAM) for a cooperative network consists of a source, one decode-and-forward (DF) relay and a destination which are single antenna systems. For increasing the spectral efficiency of the system, we use adaptive modulation method for data transmission. We propose a new adaptive modulation scheme which has less complexity than available schemes. Then, we analyze average spectral efficiency (ASE), average bit error performance (ABEP) and outage probability of the proposed scheme. Computer simulation results corroborate our theoretical relations; furthermore, it shows that our proposed scheme has the same performance as maximum spectral efficiency scheme (MSES) with much lower complexity and has better performance than some other schemes

    ๋ฌด์„ ํ†ต์‹ ๋ง์—์„œ ์ฒ˜๋ฆฌ์œจ ๊ฐœ์„ ์„ ์œ„ํ•œ ์‹ ํ˜ธ์ „๋‹ฌ ๋ถ€ํ•˜์˜ ์ €๊ฐ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2014. 2. ์ „ํ™”์ˆ™.๋ฌด์„ ํ†ต์‹ ๋ง(wireless networks)์€ ๋ฌด์„  ์ฑ„๋„์˜ ์ƒํƒœ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด ๋งํฌ ์ ์‘(link adaptation) ๊ธฐ์ˆ ์„ ๊ธฐ๋ณธ์ ์œผ๋กœ ์‚ฌ์šฉํ•œ๋‹ค. ๋งํฌ ์ ์‘ ๊ธฐ์ˆ ์„ ์œ„ํ•ด์„œ๋Š” ์ฑ„๋„ ์ƒํƒœ ์ •๋ณด๋ฅผ ์ถ”์ •ํ•˜๊ณ  ์ˆ˜์ง‘ํ•ด์•ผํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ด์— ๋”ฐ๋ฅธ ์‹ ํ˜ธ์ „๋‹ฌ ๋ถ€ํ•˜(signaling overhead)๊ฐ€ ๋ฐœ์ƒํ•˜๊ฒŒ ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฌด์„ ํ†ต์‹ ๋ง์—์„œ์˜ ์‹ ํ˜ธ์ „๋‹ฌ ๋ถ€ํ•˜๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•œ ๋‘ ๊ฐ€์ง€ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋จผ์ € ํ˜‘๋ ฅ ํ†ต์‹  ๋„คํŠธ์›Œํฌ(cooperative communication networks)์—์„œ์˜ ์ ์‘์ ์ธ ์ „์†ก ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜๋Š” ํ˜‘๋ ฅ ํ†ต์‹  ๋„คํŠธ์›Œํฌ๋Š” ACK(positive acknowledgement)/NACK(negative ACK)์™€ ๊ฐ™์€ ์ œํ•œ๋œ ํ”ผ๋“œ๋ฐฑ ์ •๋ณด๋กœ๋ถ€ํ„ฐ ์ถ”์ •๋œ ์ฑ„๋„ ์ƒํƒœ์— ๊ธฐ๋ฐ˜์„ ๋‘์–ด ์ „์†ก ์†๋„๋ฅผ ์กฐ์ ˆํ•˜๋ฉด์„œ ๋ฆด๋ ˆ์ด(relay)์˜ ์‚ฌ์šฉ์—ฌ๋ถ€๋„ ํ•จ๊ป˜ ๊ฒฐ์ •ํ•œ๋‹ค. ์ œํ•œ๋œ ํ”ผ๋“œ๋ฐฑ ์ •๋ณด๋Š” ์‹ค์ œ ์ฑ„๋„ ์ƒํƒœ์— ๋Œ€ํ•œ ๋ถ€๋ถ„์ ์ธ ์ •๋ณด๋งŒ์„ ์ œ๊ณตํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ œ์•ˆํ•˜๋Š” ๊ธฐ๋ฒ•์„ ๋ถˆํ™•์‹ค์„ฑ ๋งˆ์ฝ”๋ธŒ ์˜์‚ฌ ๊ฒฐ์ •(partially observable Markov decision process)์— ๋”ฐ๋ผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ, ์…€๋ฃฐ๋Ÿฌ ๋„คํŠธ์›Œํฌ์—์„œ์˜ ๊ธฐ๊ธฐ ๊ฐ„(D2D, device-to-device) ํ†ต์‹ ์„ ์œ„ํ•œ ์ž์› ๊ด€๋ฆฌ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์€ ๋‘ ๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋˜๊ณ  ์ค€ ๋ถ„์‚ฐ์ (semi-distributed)์œผ๋กœ ๋™์ž‘ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ์ค‘์•™ ์ง‘์ค‘์ (centralized)์œผ๋กœ ๊ธฐ์ง€๊ตญ์ด ์ž์› ๋ธ”๋ก์„ B2D(BS-to-user device) ๋งํฌ์™€ D2D ๋งํฌ์—๊ฒŒ ํ• ๋‹นํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ๋ถ„์‚ฐ์ (distributed)์œผ๋กœ ๊ธฐ์ง€๊ตญ์€ B2D ๋งํฌ์— ํ• ๋‹น๋œ ์ž์› ๋ธ”๋ก๋“ค์„ ์‚ฌ์šฉํ•˜์—ฌ ์ „์†ก ์Šค์ผ€์ค„์„ ๊ฒฐ์ •(scheduling)ํ•˜๊ณ , ๊ฐ D2D ๋งํฌ์˜ ์ œ 1 ์‚ฌ์šฉ์ž ๊ธฐ๊ธฐ(primary user device)๋Š” ํ•ด๋‹น D2D ๋งํฌ์— ํ• ๋‹น๋œ ์ž์› ๋ธ”๋ก๋“ค์—์„œ์˜ ๋งํฌ ์ ์‘์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ž์› ๊ด€๋ฆฌ ๊ตฌ์กฐ๋Š” ์ค‘์•™ ์ง‘์ค‘์  ๊ธฐ๋ฒ•์ฒ˜๋Ÿผ ๋†’์€ ๋„คํŠธ์›Œํฌ ์šฉ๋Ÿ‰์„ ๋‹ฌ์„ฑํ•  ๋ฟ ์•„๋‹ˆ๋ผ ๋ถ„์‚ฐ์  ๊ธฐ๋ฒ•์ฒ˜๋Ÿผ ๋‚ฎ์€ ์‹ ํ˜ธ์ „๋‹ฌ ๋ฐ ๊ณ„์‚ฐ(computational) ๋ถ€ํ•˜๋ฅผ ํ•„์š”๋กœ ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ œ์•ˆํ•œ ์ž์› ๊ด€๋ฆฌ ๊ตฌ์กฐ์—์„œ ์ฃผํŒŒ์ˆ˜ ์ž์› ํšจ์œจ์„ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ์ž์› ๋ธ”๋ก ํ• ๋‹น ๋ฌธ์ œ๋“ค์„ ๋‘ ๊ฐ€์ง€ ์„œ๋กœ ๋‹ค๋ฅธ ์ž์› ํ• ๋‹น ์ •์ฑ…์— ๋Œ€ํ•˜์—ฌ ๋งŒ๋“ค๊ณ  ์ด ๋ฌธ์ œ๋“ค์„ ํ’€๊ธฐ ์œ„ํ•ด ํƒ์š•(greedy) ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ์—ด ์ถ”๊ฐ€ ๊ธฐ๋ฐ˜(column generation-based) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋˜ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์ œ์•ˆํ•˜๋Š” ๊ธฐ๋ฒ•๋“ค์ด ์„ค๊ณ„ ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ณ  ๊ธฐ์กด์˜ ๊ธฐ๋ฒ•๋ณด๋‹ค ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์ด๋ฉด์„œ๋„ ์‹ ํ˜ธ์ „๋‹ฌ ๋ถ€ํ•˜๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค.Wireless networks usually adopt some link adaptation techniques to mitigate the performance degradation due to the time-varying characteristics of wireless channels. Since the link adaptation techniques require to estimate and collect channel state information, signaling overhead is inevitable in wireless networks. In this thesis, we propose two schemes to reduce the signaling overhead in wireless networks. First, we design an adaptive transmission scheme for cooperative communication networks. The cooperative network with the proposed scheme chooses the transmission rate and decides to involve the relay in transmission, adapting to the channel state estimated from limited feedback information (e.g., ACK/NACK feedback). Considering that the limited feedback information provides only partial knowledge about the actual channel states, we design a decision-making algorithm on cooperative transmission by using a partially observable Markov decision process (POMDP) framework. Next, we also propose a two-stage semi-distributed resource management framework for the device-to-device (D2D) communication in cellular networks. At the first stage of the framework, the base station (BS) allocates resource blocks (RBs) to BS-to-user device (B2D) links and D2D links, in a centralized manner. At the second stage, the BS schedules the transmission using the RBs allocated to B2D links, while the primary user device of each D2D link carries out link adaptation on the RBs allocated to the D2D link, in a distributed fashion. The proposed framework has the advantages of both centralized and distributed design approaches, i.e., high network capacity and low signaling/computational overhead, respectively. We formulate the problems of RB allocation to maximize the radio resources efficiency, taking account of two different policies on the spatial reuse of RBs. To solve these problems, we suggest a greedy algorithm and a column generation-based algorithm. By simulation, it is shown that the proposed schemes achieve their design goal properly and outperform existing schemes while reducing the signaling overhead.1 Introduction 1 1.1 Background and Motivation 1 1.2 Approaches to Reduce Signaling Overhead 5 1.3 Proposed Schemes 7 1.3.1 Adaptive Transmission Scheme for Cooperative Communication 7 1.3.2 Resource Management Scheme for D2D Communication in Cellular Networks 8 1.4 Organization 10 2 Adaptive Transmission Scheme for Cooperative Communication 11 2.1 System Model 11 2.2 Cooperative Networks with Limited Feedback 12 2.2.1 Operation of the Proposed Cooperative Network 12 2.2.2 Finite-State Markov Channel Model 15 2.2.3 Packet Error Probability 16 2.2.4 Channel Feedback Schemes 18 2.3 Adaptive Transmission Scheme for Cooperative Communication 19 2.3.1 POMDP Formulation 19 2.3.2 Solution to POMDP 22 3 Resource Management Scheme for D2D Communication in Cellular Networks 25 3.1 System Model 25 3.1.1 Network Model 25 3.1.2 Radio Resource Model 27 3.2 Proposed Resource Management Framework 28 3.2.1 Framework Overview 28 3.2.2 Two-Stage Resource Management 29 3.2.3 Advantages of the Proposed Framework 31 3.3 Conditions for Simultaneous Transmission of B2D and D2D Links 33 3.3.1 Analysis of Interference on B2D and D2D Links 33 3.3.2 Conditions for Simultaneous Transmission of B2D and D2D Links 36 3.4 Resource Block Allocation 38 3.4.1 Resource Block Allocation with Conservative Reuse Policy 39 3.4.2 Resource Block Allocation with Aggressive Reuse Policy 44 4 Performance Evaluation 52 4.1 Adaptive Transmission Scheme for Cooperative Communication 52 4.1.1 Simulation Model 52 4.1.2 Simulation Results 53 4.2 Resource Management Scheme for D2D Communication in Cellular Networks 62 4.2.1 Simulation Model 62 4.2.2 Simulation Results 64 5 Conclusion 75 Bibliography 77 Abstract 85Docto
    corecore