85 research outputs found

    A cascaded converter interfacing long distance HVDC and back-to-back HVDC systems

    Get PDF
    This paper proposes a cascaded converter dedicated to long-distance HVDC infeed and asynchronous back-to-back interconnection of receiving grids. The cascaded converter is consisted of MMCs in series and parallel connection, meeting the high DC voltage and power demand of HVDC system. It realizes hierarchical feeding and asynchronous interconnection of receiving grids, optimizing the multi-infeed short circuit ratio and improving the flexibility of the receiving grids. The topology and operating characteristics of the cascaded converter are introduced in detail. The multi-infeed short-circuits ratio (MISCR) and the maximum power infeed of the cascaded converter based HVDC systems are analyzed. Various feasible operating modes with online switching strategies of the cascaded converter are studied to improve the operational flexibility of the system. The simulation results verify the effectiveness of the control strategy of the HVDC system embedding the cascaded converter. The DC faults clearing strategy and operating modes switching strategies are also validated

    Steady-state impedance mapping in grids with power electronics: What is grid strength in modern power systems?

    Get PDF
    The paper analyzes grid strength and grid impedance for systems with significant penetration of power electronics. The work shows that the traditionally employed Thévenin equivalent cannot capture the different saturation states of power converters and therefore some classical definitions of grid strength based on short-circuit power at the point of connection fail to describe the system behavior. The paper proposes to map the impedance for all the different possible voltages at the point of connection and analyzes how the impedance depend on the voltage and angle of derivation for different possible simplified systems (grid-following converter in parallel with a Thévenin equivalent and grid-forming converter) considering the different saturation states of the converter. Numerical results and case studies are included as examples of the conducted analysis.Peer ReviewedPostprint (author's final draft

    A novel method of restoration path optimization for the AC-DC bulk power grid after a major blackout

    Full text link
    The restoration control of the modern alternating current-direct current (AC-DC) hybrid power grid after a major blackout is difficult and complex. Taking into account the interaction between the line-commutated converter high-voltage direct current (LCC-HVDC) and the AC power grid, this paper proposes a novel optimization method of restoration path to reconfigure the skeleton network for the blackout power grid. Based on the system strength, the supporting capability of the AC power grid for the LCC-HVDC is first analysed from the aspects of start-up and operation of LCC-HVDCs. Subsequently, the quantitative relationship between the restoration path and the restoration characteristic of LCC-HVDC is derived in detail based on the system strength indices of the short-circuit capacity and the frequency regulation capability. Then, an optimization model of restoration path considering non-tree paths is formulated and a feasible optimization algorithm is proposed to achieve the optimal path restoration scheme. A modified IEEE 39-bus system and a partial power grid of Southwest China are simulated to show that the proposed method is suitable for the restoration of AC-DC power grids and can improve restoration efficiency. This research can be an important guidance for operators to rapidly restore the AC-DC power grid.Comment: Accepted by IET Generation, Transmission & Distributio

    Small signal stability analysis of proportional resonant controlled VSCs connected to AC grids with variable X/R characteristic

    Get PDF
    Capítuos 2,3 y 4 confidenciales por patente.-- Tesis completa 237.p. Tesis censurada 120 p.Para garantizar un futuro energético sostenible, es fundamental la incorporación de energías renovables en la red eléctrica. Sin embargo, con su creciente integración, las redes eléctricas AC se están volviendo cada vez más débiles, más complejas y caóticas. Por ello, se hace imprescindible el estudio de los retos técnicos que dicha integración plantea. Fenómenos como la desconexión de líneas AC, el bloqueo de convertidores, o variaciones de carga debidas a las intermitencias de la generación renovable, están comenzando a producir cambios en los valores de impedancia y en las características inductivo-resistivas de incluso las redes fuertes. Conforme una red AC se debilita su impedancia equivalente aumenta, y esto provoca cambios indeseados en las magnitudes de potencia activa y reactiva, que derivan en variaciones repentinas de tensión en diferentes puntos de la red AC. Esto también conlleva el deterioro de los convertidores y empeoramiento de la calidad de onda. Una solución parcial a este problema es limitar la potencia allí donde se genera, en perjuicio de aumentar las pérdidas locales. Otra solución es introducir controles de convertidores más robustos, para que sean capaces de sortear estos escenarios cada vez más frecuentes. En este contexto, los convertidores de fuente de tensión (VSC), y en especial los convertidores modulares multinivel, presentan una serie de prestaciones que los hacen idóneos para esta clase de escenarios, dado su mejor comportamiento dinámico frente a los convertidores de fuente de corriente, al operar a una frecuencia de conmutación mayor, y presentando capacidades LVRT y control desacoplado de potencia activa y reactiva. Entre los controles internos de corriente de los VSCs, los controladores proporcional resonantes han aparecido como alternativa a los proporcional integrales, debido a su capacidad de manejar operación tanto equilibrada como desequilibrada y a que eliminan lanecesidad de utilizar un phase-locked loop y las transformadas de Park. Muy pocos estudios se han realizado con VSCs con control proporcional resonante sujetos a cambios en la fortaleza de la red AC, y menos aun considerando la variación de su característica inductivo-resistiva. Por lo tanto, en esta tesis doctoral se propone una metodología de parametrización del control proporcional resonante de un VSC conectado a una red AC con fortaleza y característica inductivo-resistiva variables, que asegure su estabilidad en pequeña señal. Con el objetivo de caracterizar dicha estabilidad, se construye un modelo de pequeña señal del sistema compuesto por el VSC conectado a red AC. Posteriormente se valida con simulaciones EMT y se procede con el análisis de escenarios. Los resultados del análisis demuestran que tan solo una desviación del 20% en el ratio X/R de la red AC con respecto a su valor habitual puede hacer perder al sistema su estabilidad en pequeña señal cuando la red AC es débil. La metodología propone nuevas parametrizaciones del control proporcional resonante del VSC que devuelven la estabilidad al sistema en estos escenarios. La validación y verificación de la metodología se realiza a través de un caso de estudio en DIgSILENT PF: una planta de generación eólica marina que evacúa energía a la red AC por medio de un enlace de alta tensión en continua

    Recent developments in HVDC transmission systems to support renewable energy integration

    Get PDF
    The demands for massive renewable energy integration, passive network power supply, and global energy interconnection have all gradually increased, posing new challenges for high voltage direct current (HVDC) power transmission systems, including more complex topology and increased diversity of bipolar HVDC transmission. This study proposes that these two factors have led to new requirements for HVDC control strategies. Moreover, due to the diverse applications of HVDC transmission technology, each station in the system has different requirements. Furthermore, the topology of the AC-DC converter is being continuously developed, revealing a trend towards hybrid converter stations. Keywords: Direct current transmission system, Topology, Control strategy, AC-DC converte

    Modelling and control of hybrid LCC HVDC System

    Get PDF
    A novel hybrid HVDC system is proposed based on the traditional LCC HVDC system. The proposed system is able to achieve full elimination of commutation failures which cannot be achieved in traditional LCC HVDC systems. In addition, reactive power controller is designed for the hybrid HVDC system. The controller is able to achieve zero reactive power exchange with the connected AC system at inverter side. It can also facilitate a faster fault recovery. Finally, the black start capability of the hybrid system is investigated. The black start sequence and inverter AC voltage controller are designed to achieve smooth and reliable black start of inverter AC system. The performances of the proposed system and controller are validated through detailed simulations in Real Time Digital Simulator (RTDS)

    Control and Protection of MMC-Based HVDC Systems: A Review

    Get PDF
    The voltage source converter (VSC) based HVDC (high voltage direct current system) offers the possibility to integrate other renewable energy sources (RES) into the electrical grid, and allows power flow reversal capability. These appealing features of VSC technology led to the further development of multi-terminal direct current (MTDC) systems. MTDC grids provide the possibility of interconnection between conventional power systems and other large-scale offshore sources like wind and solar systems. The modular multilevel converter (MMC) has become a popular technology in the development of the VSC-MTDC system due to its salient features such as modularity and scalability. Although, the employment of MMC converter in the MTDC system improves the overall system performance. However, there are some technical challenges related to its operation, control, modeling and protection that need to be addressed. This paper mainly provides a comprehensive review and investigation of the control and protection of the MMC-based MTDC system. In addition, the issues and challenges associated with the development of the MMC-MTDC system have been discussed in this paper. It majorly covers the control schemes that provide the AC system support and state-of-the-art relaying algorithm/ dc fault detection and location algorithms. Different types of dc fault detection and location algorithms presented in the literature have been reviewed, such as local measurement-based, communication-based, traveling wave-based and artificial intelligence-based. Characteristics of the protection techniques are compared and analyzed in terms of various scenarios such as implementation in CBs, system configuration, selectivity, and robustness. Finally, future challenges and issues regarding the development of the MTDC system have been discussed in detail
    corecore