104 research outputs found

    A survey on signature-based Gr\"obner basis computations

    Full text link
    This paper is a survey on the area of signature-based Gr\"obner basis algorithms that was initiated by Faug\`ere's F5 algorithm in 2002. We explain the general ideas behind the usage of signatures. We show how to classify the various known variants by 3 different orderings. For this we give translations between different notations and show that besides notations many approaches are just the same. Moreover, we give a general description of how the idea of signatures is quite natural when performing the reduction process using linear algebra. This survey shall help to outline this field of active research.Comment: 53 pages, 8 figures, 11 table

    Predicting zero reductions in Gr\"obner basis computations

    Full text link
    Since Buchberger's initial algorithm for computing Gr\"obner bases in 1965 many attempts have been taken to detect zero reductions in advance. Buchberger's Product and Chain criteria may be known the most, especially in the installaton of Gebauer and M\"oller. A relatively new approach are signature-based criteria which were first used in Faug\`ere's F5 algorithm in 2002. For regular input sequences these criteria are known to compute no zero reduction at all. In this paper we give a detailed discussion on zero reductions and the corresponding syzygies. We explain how the different methods to predict them compare to each other and show advantages and drawbacks in theory and practice. With this a new insight into algebraic structures underlying Gr\"obner bases and their computations might be achieved.Comment: 25 pages, 3 figure

    The F5 Criterion revised

    Get PDF
    The purpose of this work is to generalize part of the theory behind Faugere's "F5" algorithm. This is one of the fastest known algorithms to compute a Groebner basis of a polynomial ideal I generated by polynomials f_{1},...,f_{m}. A major reason for this is what Faugere called the algorithm's "new" criterion, and we call "the F5 criterion"; it provides a sufficient condition for a set of polynomials G to be a Groebner basis. However, the F5 algorithm is difficult to grasp, and there are unresolved questions regarding its termination. This paper introduces some new concepts that place the criterion in a more general setting: S-Groebner bases and primitive S-irreducible polynomials. We use these to propose a new, simple algorithm based on a revised F5 criterion. The new concepts also enable us to remove various restrictions, such as proving termination without the requirement that f_{1},...,f_{m} be a regular sequence.Comment: Originally submitted by Arri in 2009, with material added by Perry since 2010. The 2016 editions correct typographical issues not caught in previous editions bring the theory of the body into conformity with the published version of the pape

    A survey on signature-based algorithms for computing Gröbner basis computations

    Get PDF
    International audienceThis paper is a survey on the area of signature-based Gröbner basis algorithms that was initiated by Faugère's F5 algorithm in 2002. We explain the general ideas behind the usage of signatures. We show how to classify the various known variants by 3 different orderings. For this we give translations between different notations and show that besides notations many approaches are just the same. Moreover, we give a general description of how the idea of signatures is quite natural when performing the reduction process using linear algebra. This survey shall help to outline this field of active research

    The F5 Criterion Revised

    Get PDF
    The purpose of this work is to generalize part of the theory behind Faugere\u27s F5 algorithm. This is one of the fastest known algorithms to compute a Gröbner basis of a polynomial ideal I generated by polynomials f1,…,fm. A major reason for this is what Faugere called the algorithm\u27s new criterion, and we call the F5 criterion : it provides a sufficient condition for a set of polynomialsGto be a Gröbner basis. However. the F5 algorithm is difficult to grasp, and there are unresolved questions regarding its termination. This paper introduces some new concepts that place the criterion in a more general setting:S-Gröbner bases and primitive S-irreducible polynomials. We use these to propose a new, simple algorithm based on a revised F5 criterion. The new concepts also enable us to remove various restrictions, such as proving termination without the requirement that f1,…,fm be a regular sequence. (C) 2011 Elsevier Ltd. All rights reserved
    • …
    corecore