7 research outputs found

    Robust Consensus Tracking of Heterogeneous Multi-Agent Systems under Switching Topologies

    Full text link
    In this paper, we consider a robust consensus tracking problem of heterogeneous multi-agent systems with time-varying interconnection topologies. Based on common Lyapunov function and internal model techniques, both state and output feedback control laws are derived to solve this problem. The proposed design is robust by admitting some parameter uncertainties in the multi-agent system.Comment: 11 pages, 4 figures, accepte

    On Distributed Internal Model Principle for Output Regulation over Time-Varying Networks of Linear Heterogeneous Agents

    Full text link
    We study a multi-agent output regulation problem, where not all agents have access to the exosystem's dynamics. We propose a distributed controller that solves the problem for linear, heterogeneous, and uncertain agent dynamics as well as time-varying directed networks. The distributed controller consists of two parts: (1) an exosystem generator that creates a local copy of the exosystem dynamics by using consensus protocols, and (2) a dynamic compensator that uses (again) consensus to approach the internal model of the exosystem and thereby achieves perfect output regulation. Our approach leverages methods from internal model based controller synthesis, multi-agent consensus over directed networks, and stability of time-varying linear systems; the derived result is an adaptation of the (centralized) internal model principle to the distributed, networked setting

    Cooperative Robust Output Regulation Problem for Discrete-Time Linear Time-Delay Multi-Agent Systems

    Full text link
    In this paper, we study the cooperative robust output regulation problem for discrete-time linear multi-agent systems with both communication and input delays by distributed internal model approach. We first introduce the distributed internal model for discrete-time multi-agent systems with both communication and input delays. Then, we define so-called auxiliary system and auxiliary augmented system. Finally, we solve our problem by showing, under some standard assumptions, that if a distributed state feedback control or a distributed output feedback control solves the robust output regulation problem of the auxiliary system, then the same control law solves the cooperative robust output regulation problem of the original multi-agent systems.Comment: arXiv admin note: text overlap with arXiv:1508.0420

    Internal Model Approach to Cooperative Robust Output Regulation for Linear Uncertain Time-Delay Multi-Agent Systems

    Full text link
    In this paper, we study the cooperative robust output regulation problem for linear uncertain multi-agent systems with both communication delay and input delay by the distributed internal model approach. The problem includes the leader-following consensus problem of linear multi-agent systems with time-delay as a special case. We first generalize the internal model design method to systems with both communication delay and input delay. Then, under a set of standard assumptions, we have obtained the solution of the problem via both the state feedback control and the output feedback control. In contrast with the existing results, our results apply to general uncertain linear multi-agent systems, accommodate a large class of leader signals, and achieve the asymptotic tracking and disturbance rejection at the same time.Comment: 15 pages, 3 figure

    A hybrid approach for cooperative output regulation with sampled compensator

    Full text link
    This work investigates the cooperative output regulation problem of linear multi-agent systems with hybrid sampled data control. Due to the limited data sensing and communication, in many practical situations, only sampled data are available for the cooperation of multi-agent systems. To overcome this problem, a distributed hybrid controller is presented for the cooperative output regulation, and cooperative output regulation is achieved by well designed state feedback law. Then it proposed a method for the designing of sampled data controller to solve the cooperative output regulation problem with continuous linear systems and discrete-time communication data. Finally, numerical simulation example for cooperative tracking and a simulation example for optimal control of micro-grids are proposed to illustrate the result of the sampled data control law

    Cooperative Global Robust Output Regulation for a Class of Nonlinear Multi-Agent Systems by Distributed Event-Triggered Control

    Full text link
    This paper studies the event-triggered cooperative global robust output regulation problem for a class of nonlinear multi-agent systems via a distributed internal model design. We show that our problem can be solved practically in the sense that the ultimate bound of the tracking error can be made arbitrarily small by adjusting a design parameter in the proposed event-triggered mechanism. Our result offers a few new features. First, our control law is robust against both external disturbances and parameter uncertainties, which are allowed to belong to some arbitrarily large prescribed compact sets. Second, the nonlinear functions in our system do not need to satisfy the global Lipchitz condition. Thus our systems are general enough to include some benchmark nonlinear systems that cannot be handled by existing approaches. Finally, our control law is a specific distributed output-based event-triggered control law, which lends itself to a direct digital implementation.Comment: This paper has been submitted to a journal on July 17, 201

    Time-Varying Formation Control of a Collaborative Multi-Agent System Using Negative-Imaginary Systems Theory

    Full text link
    The movement of cooperative robots in a densely cluttered environment may not be possible if the formation type is invariant. Hence, we investigate a new method for time-varying formation control for a group of heterogeneous autonomous vehicles, which may include Unmanned Ground Vehicles (UGV) and Unmanned Aerial Vehicles (UAV). We have extended a Negative-Imaginary (NI) consensus control approach to switch the formation shape of the robots whilst only using the relative distance between agents and between agents and obstacles. All agents can automatically create a new safe formation to overcome obstacles based on a novel geometric method, then restore the prototype formation once the obstacles are cleared. Furthermore, we improve the position consensus at sharp corners by achieving yaw consensus between robots. Simulation and experimental results are then analyzed to validate the feasibility of our proposed approach
    corecore