3 research outputs found

    An experimental characterization of reservoir computing in ambient assisted living applications

    Get PDF
    In this paper, we present an introduction and critical experimental evaluation of a reservoir computing (RC) approach for ambient assisted living (AAL) applications. Such an empirical analysis jointly addresses the issues of efficiency, by analyzing different system configurations toward the embedding into computationally constrained wireless sensor devices, and of efficacy, by analyzing the predictive performance on real-world applications. First, the approach is assessed on a validation scheme where training, validation and test data are sampled in homogeneous ambient conditions, i.e., from the same set of rooms. Then, it is introduced an external test set involving a new setting, i.e., a novel ambient, which was not available in the first phase of model training and validation. The specific test-bed considered in the paper allows us to investigate the capability of the RC approach to discriminate among user movement trajectories from received signal strength indicator sensor signals. This capability can be exploited in various AAL applications targeted at learning user indoor habits, such as in the proposed indoor movement forecasting task. Such a joint analysis of the efficiency/efficacy trade-off provides novel insight in the concrete successful exploitation of RC for AAL tasks and for their distributed implementation into wireless sensor networks

    A General Purpose Distributed Learning Model for Robotic Ecologies

    No full text
    The design of a learning system for robotic ecologies need to account for some key aspects of the ecology model such as distributivity, heterogeneity of the computational, sensory and actuator capabilities, as well as self-configurability. The paper proposes general guiding principles for learning systems' design that ensue from key ecology properties, and presents a distributed learning system for the Rubicon ecology that draws inspiration from such guidelines. The proposed learning system provides the Rubicon ecology with a set of general-purpose learning services which can be used to learn generic computational tasks that involve predicting information of interest based on dynamic sensorial input streams

    A General Purpose Distributed Learning Model for Robotic Ecologies

    No full text
    The design of a learning system for robotic ecologies need to account for some key aspects of the ecology model such as distributivity, heterogeneity of the computational, sensory and actuator capabilities, as well as self-configurability. The paper proposes general guiding principles for learning systems' design that ensue from key ecology properties, and presents a distributed learning system for the Rubicon ecology that draws inspiration from such guidelines. The proposed learning system provides the Rubicon ecology with a set of general-purpose learning services which can be used to learn generic computational tasks that involve predicting information of interest based on dynamic sensorial input streams
    corecore