12 research outputs found

    An inexact matching approach for the comparison of plane curves with general elastic metrics

    Full text link
    This paper introduces a new mathematical formulation and numerical approach for the computation of distances and geodesics between immersed planar curves. Our approach combines the general simplifying transform for first-order elastic metrics that was recently introduced by Kurtek and Needham, together with a relaxation of the matching constraint using parametrization-invariant fidelity metrics. The main advantages of this formulation are that it leads to a simple optimization problem for discretized curves, and that it provides a flexible approach to deal with noisy, inconsistent or corrupted data. These benefits are illustrated via a few preliminary numerical results.Comment: 5 pages, 5 figure

    ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ расстояний ΠΌΠ΅ΠΆΠ΄Ρƒ изобраТСниями ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ² Π΄Π΅ Π Π°ΠΌΠ°

    Get PDF
    The goal of the paper is to develop an algorithm for matching the shapes of images of objects based on the geometric method of de Rham currents and preliminary affine transformation of the source image shape. In the formation of the matching algorithm, the problems of ensuring invariance to geometric image transformations and ensuring the absence of a bijective correspondence requirement between images segments were solved. The algorithm of shapes matching based on the current method is resistant to changes of the topology of object shapes and reparametrization. When analyzing the data structures of an object, not only the geometric form is important, but also the signals associated with this form by functional dependence. To take these signals into account, it is proposed to expand de Rham currents with an additional component corresponding to the signal structure. To improve the accuracy of shapes matching of the source and terminal images we determine the functional on the basis of the formation of a squared distance between the shapes of the source and terminal images modeled by de Rham currents. The original image is subjected to preliminary affine transformation to minimize the squared distance between the deformed and terminal images.ЦСлью Ρ€Π°Π±ΠΎΡ‚Ρ‹ являСтся Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° сравнСния Ρ„ΠΎΡ€ΠΌ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ², основанного Π½Π° гСомСтричСском ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ² Π΄Π΅ Π Π°ΠΌΠ° ΠΈ ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π°Ρ„Ρ„ΠΈΠ½Π½ΠΎΠΌ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ исходной Ρ„ΠΎΡ€ΠΌΡ‹ изобраТСния. ΠŸΡ€ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° сравнСния Ρ€Π΅ΡˆΠ΅Π½Ρ‹ Π·Π°Π΄Π°Ρ‡ΠΈ обСспСчСния инвариантности ΠΊ гСомСтричСским прСобразованиям ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ ΠΈ обСспСчСния отсутствия трСбования Π±ΠΈΠ΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ соотвСтствия ΠΌΠ΅ΠΆΠ΄Ρƒ сСгмСнтами исходного ΠΈ Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ. Алгоритм сравнСния Ρ„ΠΎΡ€ΠΌ, основанный Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ², устойчив ΠΊ измСнСнию Ρ‚ΠΎΠΏΠΎΠ»ΠΎΠ³ΠΈΠΈ Ρ„ΠΎΡ€ΠΌ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² ΠΈ Ρ€Π΅ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ. ΠŸΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ структур Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° ΠΈΠΌΠ΅Π΅Ρ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ гСомСтричСская Ρ„ΠΎΡ€ΠΌΠ°, Π½ΠΎ ΠΈ сигналы, ассоциированныС с этой Ρ„ΠΎΡ€ΠΌΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒΡŽ. Для ΡƒΡ‡Π΅Ρ‚Π° этих сигналов прСдлагаСтся Ρ€Π°ΡΡˆΠΈΡ€ΠΈΡ‚ΡŒ ΠΏΠΎΡ‚ΠΎΠΊΠΈ Π΄Π΅ Π Π°ΠΌΠ° Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠΌ, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌ структурС сигнала. Для ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ точности сравнСния Ρ„ΠΎΡ€ΠΌ исходного ΠΈ Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ опрСдСляСтся Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π» Π½Π° основС формирования ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° расстояния ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ„ΠΎΡ€ΠΌΠ°ΠΌΠΈ исходного ΠΈ Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ΠΌΠΈ ΠΏΠΎΡ‚ΠΎΠΊΠ°ΠΌΠΈ Π΄Π΅ Π Π°ΠΌΠ°. Π˜ΡΡ…ΠΎΠ΄Π½ΠΎΠ΅ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ подвСргаСтся ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ Π°Ρ„Ρ„ΠΈΠ½Π½ΠΎΠΌΡƒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ для ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° расстояния ΠΌΠ΅ΠΆΠ΄Ρƒ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ ΠΈ Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ изобраТСниями

    Interpolating between Optimal Transport and MMD using Sinkhorn Divergences

    Get PDF
    Comparing probability distributions is a fundamental problem in data sciences. Simple norms and divergences such as the total variation and the relative entropy only compare densities in a point-wise manner and fail to capture the geometric nature of the problem. In sharp contrast, Maximum Mean Discrepancies (MMD) and Optimal Transport distances (OT) are two classes of distances between measures that take into account the geometry of the underlying space and metrize the convergence in law. This paper studies the Sinkhorn divergences, a family of geometric divergences that interpolates between MMD and OT. Relying on a new notion of geometric entropy, we provide theoretical guarantees for these divergences: positivity, convexity and metrization of the convergence in law. On the practical side, we detail a numerical scheme that enables the large scale application of these divergences for machine learning: on the GPU, gradients of the Sinkhorn loss can be computed for batches of a million samples
    corecore