41,143 research outputs found

    Adversarial Black-Box Attacks on Automatic Speech Recognition Systems using Multi-Objective Evolutionary Optimization

    Full text link
    Fooling deep neural networks with adversarial input have exposed a significant vulnerability in the current state-of-the-art systems in multiple domains. Both black-box and white-box approaches have been used to either replicate the model itself or to craft examples which cause the model to fail. In this work, we propose a framework which uses multi-objective evolutionary optimization to perform both targeted and un-targeted black-box attacks on Automatic Speech Recognition (ASR) systems. We apply this framework on two ASR systems: Deepspeech and Kaldi-ASR, which increases the Word Error Rates (WER) of these systems by upto 980%, indicating the potency of our approach. During both un-targeted and targeted attacks, the adversarial samples maintain a high acoustic similarity of 0.98 and 0.97 with the original audio.Comment: Published in Interspeech 201

    NAG: Network for Adversary Generation

    Full text link
    Adversarial perturbations can pose a serious threat for deploying machine learning systems. Recent works have shown existence of image-agnostic perturbations that can fool classifiers over most natural images. Existing methods present optimization approaches that solve for a fooling objective with an imperceptibility constraint to craft the perturbations. However, for a given classifier, they generate one perturbation at a time, which is a single instance from the manifold of adversarial perturbations. Also, in order to build robust models, it is essential to explore the manifold of adversarial perturbations. In this paper, we propose for the first time, a generative approach to model the distribution of adversarial perturbations. The architecture of the proposed model is inspired from that of GANs and is trained using fooling and diversity objectives. Our trained generator network attempts to capture the distribution of adversarial perturbations for a given classifier and readily generates a wide variety of such perturbations. Our experimental evaluation demonstrates that perturbations crafted by our model (i) achieve state-of-the-art fooling rates, (ii) exhibit wide variety and (iii) deliver excellent cross model generalizability. Our work can be deemed as an important step in the process of inferring about the complex manifolds of adversarial perturbations.Comment: CVPR 201

    Adversarial Discriminative Domain Adaptation

    Full text link
    Adversarial learning methods are a promising approach to training robust deep networks, and can generate complex samples across diverse domains. They also can improve recognition despite the presence of domain shift or dataset bias: several adversarial approaches to unsupervised domain adaptation have recently been introduced, which reduce the difference between the training and test domain distributions and thus improve generalization performance. Prior generative approaches show compelling visualizations, but are not optimal on discriminative tasks and can be limited to smaller shifts. Prior discriminative approaches could handle larger domain shifts, but imposed tied weights on the model and did not exploit a GAN-based loss. We first outline a novel generalized framework for adversarial adaptation, which subsumes recent state-of-the-art approaches as special cases, and we use this generalized view to better relate the prior approaches. We propose a previously unexplored instance of our general framework which combines discriminative modeling, untied weight sharing, and a GAN loss, which we call Adversarial Discriminative Domain Adaptation (ADDA). We show that ADDA is more effective yet considerably simpler than competing domain-adversarial methods, and demonstrate the promise of our approach by exceeding state-of-the-art unsupervised adaptation results on standard cross-domain digit classification tasks and a new more difficult cross-modality object classification task

    KBGAN: Adversarial Learning for Knowledge Graph Embeddings

    Full text link
    We introduce KBGAN, an adversarial learning framework to improve the performances of a wide range of existing knowledge graph embedding models. Because knowledge graphs typically only contain positive facts, sampling useful negative training examples is a non-trivial task. Replacing the head or tail entity of a fact with a uniformly randomly selected entity is a conventional method for generating negative facts, but the majority of the generated negative facts can be easily discriminated from positive facts, and will contribute little towards the training. Inspired by generative adversarial networks (GANs), we use one knowledge graph embedding model as a negative sample generator to assist the training of our desired model, which acts as the discriminator in GANs. This framework is independent of the concrete form of generator and discriminator, and therefore can utilize a wide variety of knowledge graph embedding models as its building blocks. In experiments, we adversarially train two translation-based models, TransE and TransD, each with assistance from one of the two probability-based models, DistMult and ComplEx. We evaluate the performances of KBGAN on the link prediction task, using three knowledge base completion datasets: FB15k-237, WN18 and WN18RR. Experimental results show that adversarial training substantially improves the performances of target embedding models under various settings.Comment: To appear at NAACL HLT 201

    Understanding collaborative supply chain relationships through the application of the Williamson organisational failure framework

    Get PDF
    Many researchers have studied supply chain relationships however, the preponderance of open markets situations and ‘industry-style’ surveys have reduced the empirical focus on the dynamics of long-term, collaborative dyadic relationships. Within the supply chain the need for much closer, long-term relationships is increasing due to supplier rationalisation and globalisation (Spekman et al, 1998) and more information about these interactions is required. The research specifically tested the well-accepted Williamson’s (1975) Economic Organisations Failure Framework as a theoretical model through which long term collaborative relationships can be
    corecore