4 research outputs found

    Grid-enabled mammographic auditing and training system

    Get PDF
    Effective use of new technologies to support healthcare initiatives is important and current research is moving towards implementing secure grid-enabled healthcare provision. In the UK, a large-scale collaborative research project (GIMI: Generic Infrastructures for Medical Informatics), which is concerned with the development of a secure IT infrastructure to support very widespread medical research across the country, is underway. In the UK, there are some 109 breast screening centers and a growing number of individuals (circa 650) nationally performing approximately 1.5 million screening examinations per year. At the same, there is a serious, and ongoing, national workforce issue in screening which has seen a loss of consultant mammographers and a growth in specially trained technologists and other nonradiologists. Thus there is a need to offer effective and efficient mammographic training so as to maintain high levels of screening skills. Consequently, a grid based system has been proposed which has the benefit of offering very large volumes of training cases that the mammographers can access anytime and anywhere. A database, spread geographically across three university systems, of screening cases is used as a test set of known cases. The GIMI mammography training system first audits these cases to ensure that they are appropriately described and annotated. Subsequently, the cases are utilized for training in a grid-based system which has been developed. This paper briefly reviews the background to the project and then details the ongoing research. In conclusion, we discuss the contributions, limitations, and future plans of such a grid based approach

    Designing Clinical Data Presentation Using Cognitive Task Analysis Methods

    Get PDF
    Despite the many decades of research on effective use of clinical systems in medicine, the adoption of health information technology to improve patient care continues to be slow especially in ambulatory settings. This applies to dentistry as well, a primary care discipline with approximately 137,000 practicing dentists in the United States. One critical reason is the poor usability of clinical systems, which makes it difficult for providers to navigate through the system and obtain an integrated view of patient data during patient care. Cognitive science methods have shown significant promise to meaningfully inform and formulate the design, development and assessment of clinical information systems. Most of these methods were applied to evaluate the design of systems after they have been developed. Very few studies, on the other hand, have used cognitive engineering methods to inform the design process for a system itself. It is this gap in knowledge – how cognitive engineering methods can be optimally applied to inform the system design process – that this research seeks to address through this project proposal. This project examined the cognitive processes and information management strategies used by dentists during a typical patient exam and used the results to inform the design of an electronic dental record interface. The resulting 'proof of concept' was evaluated to determine the effectiveness and efficiency of such a cognitively engineered and application flow design. The results of this study contribute to designing clinical systems that provide clinicians with better cognitive support during patient care. Such a system will contribute to enhancing the quality and safety of patient care, and potentially to reducing healthcare costs

    A General Architecture for Intelligent Tutoring of Diagnostic Classification Problem Solving

    No full text
    We report on a general architecture for creating knowledge-based medical training systems to teach diagnostic classification problem solving. The approach is informed by our previous work describing the development of expertise in classification problem solving in Pathology. The architecture envelops the traditional Intelligent Tutoring System design within the Unified Problem-solving Method description Language (UPML) architecture, supporting component modularity and reuse. Based on the domain ontology, domain task ontology and case data, the abstract problem-solving methods of the expert model create a dynamic solution graph. Student interaction with the solution graph is filtered through an instructional layer, which is created by a second set of abstract problem-solving methods and pedagogic ontologies, in response to the current state of the student model. We outline the advantages and limitations of this general approach, and describe it’s implementation in SlideTutor–a developing Intelligent Tutoring System in Dermatopathology
    corecore