144,958 research outputs found

    Gradient-Free Methods for Saddle-Point Problem

    Full text link
    In the paper, we generalize the approach Gasnikov et. al, 2017, which allows to solve (stochastic) convex optimization problems with an inexact gradient-free oracle, to the convex-concave saddle-point problem. The proposed approach works, at least, like the best existing approaches. But for a special set-up (simplex type constraints and closeness of Lipschitz constants in 1 and 2 norms) our approach reduces nlogn\frac{n}{\log n} times the required number of oracle calls (function calculations). Our method uses a stochastic approximation of the gradient via finite differences. In this case, the function must be specified not only on the optimization set itself, but in a certain neighbourhood of it. In the second part of the paper, we analyze the case when such an assumption cannot be made, we propose a general approach on how to modernize the method to solve this problem, and also we apply this approach to particular cases of some classical sets

    Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information

    Full text link
    Recent works in learning-integrated optimization have shown promise in settings where the optimization problem is only partially observed or where general-purpose optimizers perform poorly without expert tuning. By learning an optimizer g\mathbf{g} to tackle these challenging problems with ff as the objective, the optimization process can be substantially accelerated by leveraging past experience. The optimizer can be trained with supervision from known optimal solutions or implicitly by optimizing the compound function fgf\circ \mathbf{g}. The implicit approach may not require optimal solutions as labels and is capable of handling problem uncertainty; however, it is slow to train and deploy due to frequent calls to optimizer g\mathbf{g} during both training and testing. The training is further challenged by sparse gradients of g\mathbf{g}, especially for combinatorial solvers. To address these challenges, we propose using a smooth and learnable Landscape Surrogate MM as a replacement for fgf\circ \mathbf{g}. This surrogate, learnable by neural networks, can be computed faster than the solver g\mathbf{g}, provides dense and smooth gradients during training, can generalize to unseen optimization problems, and is efficiently learned via alternating optimization. We test our approach on both synthetic problems, including shortest path and multidimensional knapsack, and real-world problems such as portfolio optimization, achieving comparable or superior objective values compared to state-of-the-art baselines while reducing the number of calls to g\mathbf{g}. Notably, our approach outperforms existing methods for computationally expensive high-dimensional problems

    Multiagent cooperation for solving global optimization problems: an extendible framework with example cooperation strategies

    Get PDF
    This paper proposes the use of multiagent cooperation for solving global optimization problems through the introduction of a new multiagent environment, MANGO. The strength of the environment lays in itsflexible structure based on communicating software agents that attempt to solve a problem cooperatively. This structure allows the execution of a wide range of global optimization algorithms described as a set of interacting operations. At one extreme, MANGO welcomes an individual non-cooperating agent, which is basically the traditional way of solving a global optimization problem. At the other extreme, autonomous agents existing in the environment cooperate as they see fit during run time. We explain the development and communication tools provided in the environment as well as examples of agent realizations and cooperation scenarios. We also show how the multiagent structure is more effective than having a single nonlinear optimization algorithm with randomly selected initial points

    A Lower Bound for the Optimization of Finite Sums

    Full text link
    This paper presents a lower bound for optimizing a finite sum of nn functions, where each function is LL-smooth and the sum is μ\mu-strongly convex. We show that no algorithm can reach an error ϵ\epsilon in minimizing all functions from this class in fewer than Ω(n+n(κ1)log(1/ϵ))\Omega(n + \sqrt{n(\kappa-1)}\log(1/\epsilon)) iterations, where κ=L/μ\kappa=L/\mu is a surrogate condition number. We then compare this lower bound to upper bounds for recently developed methods specializing to this setting. When the functions involved in this sum are not arbitrary, but based on i.i.d. random data, then we further contrast these complexity results with those for optimal first-order methods to directly optimize the sum. The conclusion we draw is that a lot of caution is necessary for an accurate comparison, and identify machine learning scenarios where the new methods help computationally.Comment: Added an erratum, we are currently working on extending the result to randomized algorithm

    Semi-proximal Mirror-Prox for Nonsmooth Composite Minimization

    Get PDF
    We propose a new first-order optimisation algorithm to solve high-dimensional non-smooth composite minimisation problems. Typical examples of such problems have an objective that decomposes into a non-smooth empirical risk part and a non-smooth regularisation penalty. The proposed algorithm, called Semi-Proximal Mirror-Prox, leverages the Fenchel-type representation of one part of the objective while handling the other part of the objective via linear minimization over the domain. The algorithm stands in contrast with more classical proximal gradient algorithms with smoothing, which require the computation of proximal operators at each iteration and can therefore be impractical for high-dimensional problems. We establish the theoretical convergence rate of Semi-Proximal Mirror-Prox, which exhibits the optimal complexity bounds, i.e. O(1/ϵ2)O(1/\epsilon^2), for the number of calls to linear minimization oracle. We present promising experimental results showing the interest of the approach in comparison to competing methods
    corecore