1,637 research outputs found

    A Game for Energy-Aware Allocation of Virtualized Network Functions

    Get PDF

    Optimal Virtualized Inter-Tenant Resource Sharing for Device-to-Device Communications in 5G Networks

    Get PDF
    Device-to-Device (D2D) communication is expected to enable a number of new services and applications in future mobile networks and has attracted significant research interest over the last few years. Remarkably, little attention has been placed on the issue of D2D communication for users belonging to different operators. In this paper, we focus on this aspect for D2D users that belong to different tenants (virtual network operators), assuming virtualized and programmable future 5G wireless networks. Under the assumption of a cross-tenant orchestrator, we show that significant gains can be achieved in terms of network performance by optimizing resource sharing from the different tenants, i.e., slices of the substrate physical network topology. To this end, a sum-rate optimization framework is proposed for optimal sharing of the virtualized resources. Via a wide site of numerical investigations, we prove the efficacy of the proposed solution and the achievable gains compared to legacy approaches.Comment: 10 pages, 7 figure

    Joint User-Association and Resource-Allocation in Virtualized Wireless Networks

    Get PDF
    In this paper, we consider a down-link transmission of multicell virtualized wireless networks (VWNs) where users of different service providers (slices) within a specific region are served by a set of base stations (BSs) through orthogonal frequency division multiple access (OFDMA). In particular, we develop a joint BS assignment, sub-carrier and power allocation algorithm to maximize the network throughput, while satisfying the minimum required rate of each slice. Under the assumption that each user at each transmission instance can connect to no more than one BS, we introduce the user-association factor (UAF) to represent the joint sub-carrier and BS assignment as the optimization variable vector in the mathematical problem formulation. Sub-carrier reuse is allowed in different cells, but not within one cell. As the proposed optimization problem is inherently non-convex and NP-hard, by applying the successive convex approximation (SCA) and complementary geometric programming (CGP), we develop an efficient two-step iterative approach with low computational complexity to solve the proposed problem. For a given power-allocation, Step 1 derives the optimum userassociation and subsequently, for an obtained user-association, Step 2 find the optimum power-allocation. Simulation results demonstrate that the proposed iterative algorithm outperforms the traditional approach in which each user is assigned to the BS with the largest average value of signal strength, and then, joint sub-carrier and power allocation is obtained for the assigned users of each cell. Especially, for the cell-edge users, simulation results reveal a coverage improvement up to 57% and 71% for uniform and non-uniform users distribution, respectively leading to more reliable transmission and higher spectrum efficiency for VWN
    • …
    corecore