9 research outputs found

    User-centred and context-aware identity management in mobile ad-hoc networks

    Get PDF
    The emergent notion of ubiquitous computing makes it possible for mobile devices to communicate and provide services via networks connected in an ad-hoc manner. These have resulted in the proliferation of wireless technologies such as Mobile Ad-hoc Networks (MANets), which offer attractive solutions for services that need flexible setup as well as dynamic and low cost wireless connectivity. However, the growing trend outlined above also raises serious concerns over Identity Management (IM) due to a dramatic increase in identity theft. The problem is even greater in service-oriented architectures, where partial identities are sprinkled across many services and users have no control over such identities. In this thesis, we review some issues of contextual computing, its implications and usage within pervasive environments. To tackle the above problems, it is essential to allow users to have control over their own identities in MANet environments. So far, the development of such identity control remains a significant challenge for the research community. The main focus of this thesis is on the area of identity management in MANets and emergency situations by using context-awareness and user-centricity together with its security issues and implications. Context- awareness allows us to make use of partial identities as a way of user identity protection and node identification. User-centricity is aimed at putting users in control of their partial identities, policies and rules for privacy protection. These principles help us to propose an innovative, easy-to-use identity management framework for MANets. The framework makes the flow of partial identities explicit; gives users control over such identities based on their respective situations and contexts, and creates a balance between convenience and privacy. The thesis presents our proposed framework, its development and lab results/evaluations, and outlines possible future work to improve the framework

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    Analysis and design of security mechanisms in the context of Advanced Persistent Threats against critical infrastructures

    Get PDF
    Industry 4.0 can be defined as the digitization of all components within the industry, by combining productive processes with leading information and communication technologies. Whereas this integration has several benefits, it has also facilitated the emergence of several attack vectors. These can be leveraged to perpetrate sophisticated attacks such as an Advanced Persistent Threat (APT), that ultimately disrupts and damages critical infrastructural operations with a severe impact. This doctoral thesis aims to study and design security mechanisms capable of detecting and tracing APTs to ensure the continuity of the production line. Although the basic tools to detect individual attack vectors of an APT have already been developed, it is important to integrate holistic defense solutions in existing critical infrastructures that are capable of addressing all potential threats. Additionally, it is necessary to prospectively analyze the requirements that these systems have to satisfy after the integration of novel services in the upcoming years. To fulfill these goals, we define a framework for the detection and traceability of APTs in Industry 4.0, which is aimed to fill the gap between classic security mechanisms and APTs. The premise is to retrieve data about the production chain at all levels to correlate events in a distributed way, enabling the traceability of an APT throughout its entire life cycle. Ultimately, these mechanisms make it possible to holistically detect and anticipate attacks in a timely and autonomous way, to deter the propagation and minimize their impact. As a means to validate this framework, we propose some correlation algorithms that implement it (such as the Opinion Dynamics solution) and carry out different experiments that compare the accuracy of response techniques that take advantage of these traceability features. Similarly, we conduct a study on the feasibility of these detection systems in various Industry 4.0 scenarios

    Security Analysis of System Behaviour - From "Security by Design" to "Security at Runtime" -

    Get PDF
    The Internet today provides the environment for novel applications and processes which may evolve way beyond pre-planned scope and purpose. Security analysis is growing in complexity with the increase in functionality, connectivity, and dynamics of current electronic business processes. Technical processes within critical infrastructures also have to cope with these developments. To tackle the complexity of the security analysis, the application of models is becoming standard practice. However, model-based support for security analysis is not only needed in pre-operational phases but also during process execution, in order to provide situational security awareness at runtime. This cumulative thesis provides three major contributions to modelling methodology. Firstly, this thesis provides an approach for model-based analysis and verification of security and safety properties in order to support fault prevention and fault removal in system design or redesign. Furthermore, some construction principles for the design of well-behaved scalable systems are given. The second topic is the analysis of the exposition of vulnerabilities in the software components of networked systems to exploitation by internal or external threats. This kind of fault forecasting allows the security assessment of alternative system configurations and security policies. Validation and deployment of security policies that minimise the attack surface can now improve fault tolerance and mitigate the impact of successful attacks. Thirdly, the approach is extended to runtime applicability. An observing system monitors an event stream from the observed system with the aim to detect faults - deviations from the specified behaviour or security compliance violations - at runtime. Furthermore, knowledge about the expected behaviour given by an operational model is used to predict faults in the near future. Building on this, a holistic security management strategy is proposed. The architecture of the observing system is described and the applicability of model-based security analysis at runtime is demonstrated utilising processes from several industrial scenarios. The results of this cumulative thesis are provided by 19 selected peer-reviewed papers

    Identifying and Mitigating Security Risks in Multi-Level Systems-of-Systems Environments

    Get PDF
    In recent years, organisations, governments, and cities have taken advantage of the many benefits and automated processes Information and Communication Technology (ICT) offers, evolving their existing systems and infrastructures into highly connected and complex Systems-of-Systems (SoS). These infrastructures endeavour to increase robustness and offer some resilience against single points of failure. The Internet, Wireless Sensor Networks, the Internet of Things, critical infrastructures, the human body, etc., can all be broadly categorised as SoS, as they encompass a wide range of differing systems that collaborate to fulfil objectives that the distinct systems could not fulfil on their own. ICT constructed SoS face the same dangers, limitations, and challenges as those of traditional cyber based networks, and while monitoring the security of small networks can be difficult, the dynamic nature, size, and complexity of SoS makes securing these infrastructures more taxing. Solutions that attempt to identify risks, vulnerabilities, and model the topologies of SoS have failed to evolve at the same pace as SoS adoption. This has resulted in attacks against these infrastructures gaining prevalence, as unidentified vulnerabilities and exploits provide unguarded opportunities for attackers to exploit. In addition, the new collaborative relations introduce new cyber interdependencies, unforeseen cascading failures, and increase complexity. This thesis presents an innovative approach to identifying, mitigating risks, and securing SoS environments. Our security framework incorporates a number of novel techniques, which allows us to calculate the security level of the entire SoS infrastructure using vulnerability analysis, node property aspects, topology data, and other factors, and to improve and mitigate risks without adding additional resources into the SoS infrastructure. Other risk factors we examine include risks associated with different properties, and the likelihood of violating access control requirements. Extending the principals of the framework, we also apply the approach to multi-level SoS, in order to improve both SoS security and the overall robustness of the network. In addition, the identified risks, vulnerabilities, and interdependent links are modelled by extending network modelling and attack graph generation methods. The proposed SeCurity Risk Analysis and Mitigation Framework and principal techniques have been researched, developed, implemented, and then evaluated via numerous experiments and case studies. The subsequent results accomplished ascertain that the framework can successfully observe SoS and produce an accurate security level for the entire SoS in all instances, visualising identified vulnerabilities, interdependencies, high risk nodes, data access violations, and security grades in a series of reports and undirected graphs. The framework’s evolutionary approach to mitigating risks and the robustness function which can determine the appropriateness of the SoS, revealed promising results, with the framework and principal techniques identifying SoS topologies, and quantifying their associated security levels. Distinguishing SoS that are either optimally structured (in terms of communication security), or cannot be evolved as the applied processes would negatively impede the security and robustness of the SoS. Likewise, the framework is capable via evolvement methods of identifying SoS communication configurations that improve communication security and assure data as it traverses across an unsecure and unencrypted SoS. Reporting enhanced SoS configurations that mitigate risks in a series of undirected graphs and reports that visualise and detail the SoS topology and its vulnerabilities. These reported candidates and optimal solutions improve the security and SoS robustness, and will support the maintenance of acceptable and tolerable low centrality factors, should these recommended configurations be applied to the evaluated SoS infrastructure

    Personality Identification from Social Media Using Deep Learning: A Review

    Get PDF
    Social media helps in sharing of ideas and information among people scattered around the world and thus helps in creating communities, groups, and virtual networks. Identification of personality is significant in many types of applications such as in detecting the mental state or character of a person, predicting job satisfaction, professional and personal relationship success, in recommendation systems. Personality is also an important factor to determine individual variation in thoughts, feelings, and conduct systems. According to the survey of Global social media research in 2018, approximately 3.196 billion social media users are in worldwide. The numbers are estimated to grow rapidly further with the use of mobile smart devices and advancement in technology. Support vector machine (SVM), Naive Bayes (NB), Multilayer perceptron neural network, and convolutional neural network (CNN) are some of the machine learning techniques used for personality identification in the literature review. This paper presents various studies conducted in identifying the personality of social media users with the help of machine learning approaches and the recent studies that targeted to predict the personality of online social media (OSM) users are reviewed

    Public Key Infrastructure

    Full text link
    corecore