12 research outputs found

    Coalition Resilient Outcomes in Max k-Cut Games

    Full text link
    We investigate strong Nash equilibria in the \emph{max kk-cut game}, where we are given an undirected edge-weighted graph together with a set {1,…,k}\{1,\ldots, k\} of kk colors. Nodes represent players and edges capture their mutual interests. The strategy set of each player vv consists of the kk colors. When players select a color they induce a kk-coloring or simply a coloring. Given a coloring, the \emph{utility} (or \emph{payoff}) of a player uu is the sum of the weights of the edges {u,v}\{u,v\} incident to uu, such that the color chosen by uu is different from the one chosen by vv. Such games form some of the basic payoff structures in game theory, model lots of real-world scenarios with selfish agents and extend or are related to several fundamental classes of games. Very little is known about the existence of strong equilibria in max kk-cut games. In this paper we make some steps forward in the comprehension of it. We first show that improving deviations performed by minimal coalitions can cycle, and thus answering negatively the open problem proposed in \cite{DBLP:conf/tamc/GourvesM10}. Next, we turn our attention to unweighted graphs. We first show that any optimal coloring is a 5-SE in this case. Then, we introduce xx-local strong equilibria, namely colorings that are resilient to deviations by coalitions such that the maximum distance between every pair of nodes in the coalition is at most xx. We prove that 11-local strong equilibria always exist. Finally, we show the existence of strong Nash equilibria in several interesting specific scenarios.Comment: A preliminary version of this paper will appear in the proceedings of the 45th International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM'19

    A Game Theory Proof of Optimal Colorings Resilience to Strong Deviations

    Get PDF
    This paper provides a formal proof of the conjecture stating that optimal colorings in max k-cut games over unweighted and undirected graphs do not allow the formation of any strongly divergent coalition, i.e., a subset of nodes able to increase their own payoffs simultaneously. The result is obtained by means of a new method grounded on game theory, which consists in splitting the nodes of the graph into three subsets: the coalition itself, the coalition boundary and the nodes without relationship with the coalition. Moreover, we find additional results concerning the properties of optimal colorings

    The Parallel Complexity of Coloring Games

    Get PDF
    International audienceWe wish to motivate the problem of finding decentralized lower-bounds on the complexity of computing a Nash equilibrium in graph games. While the centralized computation of an equilibrium in polynomial time is generally perceived as a positive result, this does not reflect well the reality of some applications where the game serves to implement distributed resource allocation algorithms, or to model the social choices of users with limited memory and computing power. As a case study, we investigate on the parallel complexity of a game-theoretic variation of graph coloring. These " coloring games " were shown to capture key properties of the more general welfare games and Hedonic games. On the positive side, it can be computed a Nash equilibrium in polynomial-time for any such game with a local search algorithm. However, the algorithm is time-consuming and it requires polynomial space. The latter questions the use of coloring games in the modeling of information-propagation in social networks. We prove that the problem of computing a Nash equilibrium in a given coloring game is PTIME-hard, and so, it is unlikely that one can be computed with an efficient distributed algorithm. The latter brings more insights on the complexity of these games

    Utilitarian Welfare Optimization in the Generalized Vertex Coloring Games: An Implication to Venue Selection in Events Planning

    Full text link
    We consider a general class of multi-agent games in networks, namely the generalized vertex coloring games (G-VCGs), inspired by real-life applications of the venue selection problem in events planning. Certain utility responding to the contemporary coloring assignment will be received by each agent under some particular mechanism, who, striving to maximize his own utility, is restricted to local information thus self-organizing when choosing another color. Our focus is on maximizing some utilitarian-looking welfare objective function concerning the cumulative utilities across the network in a decentralized fashion. Firstly, we investigate on a special class of the G-VCGs, namely Identical Preference VCGs (IP-VCGs) which recovers the rudimentary work by \cite{chaudhuri2008network}. We reveal its convergence even under a completely greedy policy and completely synchronous settings, with a stochastic bound on the converging rate provided. Secondly, regarding the general G-VCGs, a greediness-preserved Metropolis-Hasting based policy is proposed for each agent to initiate with the limited information and its optimality under asynchronous settings is proved using theories from the regular perturbed Markov processes. The policy was also empirically witnessed to be robust under independently synchronous settings. Thirdly, in the spirit of ``robust coloring'', we include an expected loss term in our objective function to balance between the utilities and robustness. An optimal coloring for this robust welfare optimization would be derived through a second-stage MH-policy driven algorithm. Simulation experiments are given to showcase the efficiency of our proposed strategy.Comment: 35 Page
    corecore