2,409 research outputs found

    Automatic domain ontology extraction for context-sensitive opinion mining

    Get PDF
    Automated analysis of the sentiments presented in online consumer feedbacks can facilitate both organizations’ business strategy development and individual consumers’ comparison shopping. Nevertheless, existing opinion mining methods either adopt a context-free sentiment classification approach or rely on a large number of manually annotated training examples to perform context sensitive sentiment classification. Guided by the design science research methodology, we illustrate the design, development, and evaluation of a novel fuzzy domain ontology based contextsensitive opinion mining system. Our novel ontology extraction mechanism underpinned by a variant of Kullback-Leibler divergence can automatically acquire contextual sentiment knowledge across various product domains to improve the sentiment analysis processes. Evaluated based on a benchmark dataset and real consumer reviews collected from Amazon.com, our system shows remarkable performance improvement over the context-free baseline

    An ontology enhanced parallel SVM for scalable spam filter training

    Get PDF
    This is the post-print version of the final paper published in Neurocomputing. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.Spam, under a variety of shapes and forms, continues to inflict increased damage. Varying approaches including Support Vector Machine (SVM) techniques have been proposed for spam filter training and classification. However, SVM training is a computationally intensive process. This paper presents a MapReduce based parallel SVM algorithm for scalable spam filter training. By distributing, processing and optimizing the subsets of the training data across multiple participating computer nodes, the parallel SVM reduces the training time significantly. Ontology semantics are employed to minimize the impact of accuracy degradation when distributing the training data among a number of SVM classifiers. Experimental results show that ontology based augmentation improves the accuracy level of the parallel SVM beyond the original sequential counterpart

    Enhanced ontology-based text classification algorithm for structurally organized documents

    Get PDF
    Text classification (TC) is an important foundation of information retrieval and text mining. The main task of a TC is to predict the text‟s class according to the type of tag given in advance. Most TC algorithms used terms in representing the document which does not consider the relations among the terms. These algorithms represent documents in a space where every word is assumed to be a dimension. As a result such representations generate high dimensionality which gives a negative effect on the classification performance. The objectives of this thesis are to formulate algorithms for classifying text by creating suitable feature vector and reducing the dimension of data which will enhance the classification accuracy. This research combines the ontology and text representation for classification by developing five algorithms. The first and second algorithms namely Concept Feature Vector (CFV) and Structure Feature Vector (SFV), create feature vector to represent the document. The third algorithm is the Ontology Based Text Classification (OBTC) and is designed to reduce the dimensionality of training sets. The fourth and fifth algorithms, Concept Feature Vector_Text Classification (CFV_TC) and Structure Feature Vector_Text Classification (SFV_TC) classify the document to its related set of classes. These proposed algorithms were tested on five different scientific paper datasets downloaded from different digital libraries and repositories. Experimental obtained from the proposed algorithm, CFV_TC and SFV_TC shown better average results in terms of precision, recall, f-measure and accuracy compared against SVM and RSS approaches. The work in this study contributes to exploring the related document in information retrieval and text mining research by using ontology in TC

    Context-awareness for mobile sensing: a survey and future directions

    Get PDF
    The evolution of smartphones together with increasing computational power have empowered developers to create innovative context-aware applications for recognizing user related social and cognitive activities in any situation and at any location. The existence and awareness of the context provides the capability of being conscious of physical environments or situations around mobile device users. This allows network services to respond proactively and intelligently based on such awareness. The key idea behind context-aware applications is to encourage users to collect, analyze and share local sensory knowledge in the purpose for a large scale community use by creating a smart network. The desired network is capable of making autonomous logical decisions to actuate environmental objects, and also assist individuals. However, many open challenges remain, which are mostly arisen due to the middleware services provided in mobile devices have limited resources in terms of power, memory and bandwidth. Thus, it becomes critically important to study how the drawbacks can be elaborated and resolved, and at the same time better understand the opportunities for the research community to contribute to the context-awareness. To this end, this paper surveys the literature over the period of 1991-2014 from the emerging concepts to applications of context-awareness in mobile platforms by providing up-to-date research and future research directions. Moreover, it points out the challenges faced in this regard and enlighten them by proposing possible solutions
    corecore