71 research outputs found

    Polynomial Fuzzy Observer-Based Feedback Control for Nonlinear Hyperbolic PDEs Systems

    Get PDF
    This article explores the observer-based feedback control problem for a nonlinear hyperbolic partial differential equations (PDEs) system. Initially, the polynomial fuzzy hyperbolic PDEs (PFHPDEs) model is established through the utilization of the fuzzy identification approach, derived from the nonlinear hyperbolic PDEs model. Various types of state estimation and controller design problems for the polynomial fuzzy PDEs system are discussed concerning the state estimation problem. To investigate the relaxed stability problem, Euler’s homogeneous theorem, Lyapunov–Krasovskii functional with polynomial matrices (LKFPM), and the sum-of-squares (SOSs) approach are adopted. The exponential stabilization condition is formulated in terms of the spatial-derivative-SOSs (SD-SOSs). Additionally, a segmental algorithm is developed to find the feasible solution for the SD-SOS condition. Finally, a hyperbolic PDEs system and several numerical examples are provided to illustrate the validity and effectiveness of the proposed results

    Sampled-Data Output-Feedback Tracking Control for Interval Type-2 Polynomial Fuzzy Systems

    Get PDF

    Systems Structure and Control

    Get PDF
    The title of the book System, Structure and Control encompasses broad field of theory and applications of many different control approaches applied on different classes of dynamic systems. Output and state feedback control include among others robust control, optimal control or intelligent control methods such as fuzzy or neural network approach, dynamic systems are e.g. linear or nonlinear with or without time delay, fixed or uncertain, onedimensional or multidimensional. The applications cover all branches of human activities including any kind of industry, economics, biology, social sciences etc

    Distributed state estimation in sensor networks with randomly occurring nonlinearities subject to time delays

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the links below - Copyright @ 2012 ACM.This article is concerned with a new distributed state estimation problem for a class of dynamical systems in sensor networks. The target plant is described by a set of differential equations disturbed by a Brownian motion and randomly occurring nonlinearities (RONs) subject to time delays. The RONs are investigated here to reflect network-induced randomly occurring regulation of the delayed states on the current ones. Through available measurement output transmitted from the sensors, a distributed state estimator is designed to estimate the states of the target system, where each sensor can communicate with the neighboring sensors according to the given topology by means of a directed graph. The state estimation is carried out in a distributed way and is therefore applicable to online application. By resorting to the Lyapunov functional combined with stochastic analysis techniques, several delay-dependent criteria are established that not only ensure the estimation error to be globally asymptotically stable in the mean square, but also guarantee the existence of the desired estimator gains that can then be explicitly expressed when certain matrix inequalities are solved. A numerical example is given to verify the designed distributed state estimators.This work was supported in part by the National Natural Science Foundation of China under Grants 61028008, 60804028 and 61174136, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Spatiotemporal Fuzzy-Observer-based Feedback Control for Networked Parabolic PDE Systems

    Get PDF
    Assisted by the Takagi-Sugeno (T-S) fuzzy model- based nonlinear control technique, nonlinear spatiotemporal feedback compensators are proposed in this article for exponential stabilization of parabolic partial differential dynamic systems with measurement outputs transmitted over a communication network. More specifically, an approximate T-S fuzzy partial differential equation (PDE) model with C∞-smooth membership functions is constructed to describe the complex spatiotemporal dynamics of the nonlinear partial differential systems, and its approximation capability is analyzed via the uniform approximation theorem on a real separable Hilbert space. A spatiotemporally asynchronous sampled-data measurement output equation is proposed to model the transmission process of networked measurement outputs. By the approximate T-S fuzzy PDE model, fuzzy-observer-based nonlinear continuous-time and sampled- data feedback compensators are constructed via the spatiotemporally asynchronous sampled-data measurement outputs. Given that sufficient conditions presented in terms of linear matrix inequalities are satisfied, the suggested fuzzy compensators can exponentially stabilize the nonlinear system in the Lyapunov sense. Simulation results are presented to show the effectiveness and merit of the suggested spatiotemporal fuzzy compensators

    Dissipative Analysis and Synthesis of Control for TS Fuzzy Markovian Jump Neutral Systems

    Get PDF
    This paper is focused on stochastic stability and strictly dissipative control design for a class of Takagi-Sugeno (TS) fuzzy neutral time delayed control systems with Markovian jumps. The main aim of this paper is to design a strictly dissipative controller such that the closed-loop TS fuzzy control system is stochastically stable, and also the disturbance rejection attenuation is obtained to a given level by means of the H∞ performance index. Intensive analysis is carried out to obtain sufficient conditions for the existence of desired dissipative controller which ensures both the stochastic stability and the strictly dissipative performance. The main advantage of the proposed technique is that it is possible to obtain the dissipative controller with less control effort and also, as special cases, robust H∞ control with the prescribed H∞ performance under given constraints and passivity control can be obtained for the considered systems. Also, the existence condition of the fuzzy dissipative controller can be obtained in terms of linear matrix inequalities. Finally, a practical example based on truck-trailer model is provided to demonstrate the effectiveness and feasibility of the proposed design technique
    corecore