2,135 research outputs found

    Moderate deviations via cumulants

    Full text link
    The purpose of the present paper is to establish moderate deviation principles for a rather general class of random variables fulfilling certain bounds of the cumulants. We apply a celebrated lemma of the theory of large deviations probabilities due to Rudzkis, Saulis and Statulevicius. The examples of random objects we treat include dependency graphs, subgraph-counting statistics in Erd\H{o}s-R\'enyi random graphs and UU-statistics. Moreover, we prove moderate deviation principles for certain statistics appearing in random matrix theory, namely characteristic polynomials of random unitary matrices as well as the number of particles in a growing box of random determinantal point processes like the number of eigenvalues in the GUE or the number of points in Airy, Bessel, and sin\sin random point fields.Comment: 24 page

    Weighted dependency graphs

    Full text link
    The theory of dependency graphs is a powerful toolbox to prove asymptotic normality of sums of random variables. In this article, we introduce a more general notion of weighted dependency graphs and give normality criteria in this context. We also provide generic tools to prove that some weighted graph is a weighted dependency graph for a given family of random variables. To illustrate the power of the theory, we give applications to the following objects: uniform random pair partitions, the random graph model G(n,M)G(n,M), uniform random permutations, the symmetric simple exclusion process and multilinear statistics on Markov chains. The application to random permutations gives a bivariate extension of a functional central limit theorem of Janson and Barbour. On Markov chains, we answer positively an open question of Bourdon and Vall\'ee on the asymptotic normality of subword counts in random texts generated by a Markovian source.Comment: 57 pages. Third version: minor modifications, after review proces

    How unproportional must a graph be?

    Get PDF
    Let uk(G,p)u_k(G,p) be the maximum over all kk-vertex graphs FF of by how much the number of induced copies of FF in GG differs from its expectation in the binomial random graph with the same number of vertices as GG and with edge probability pp. This may be viewed as a measure of how close GG is to being pp-quasirandom. For a positive integer nn and 0<p<10<p<1, let D(n,p)D(n,p) be the distance from p(n2)p\binom{n}{2} to the nearest integer. Our main result is that, for fixed k4k\ge 4 and for nn large, the minimum of uk(G,p)u_k(G,p) over nn-vertex graphs has order of magnitude Θ(max{D(n,p),p(1p)}nk2)\Theta\big(\max\{D(n,p), p(1-p)\} n^{k-2}\big) provided that p(1p)n1/2p(1-p)n^{1/2} \to \infty

    Mod-phi convergence I: Normality zones and precise deviations

    Full text link
    In this paper, we use the framework of mod-ϕ\phi convergence to prove precise large or moderate deviations for quite general sequences of real valued random variables (Xn)nN(X_{n})_{n \in \mathbb{N}}, which can be lattice or non-lattice distributed. We establish precise estimates of the fluctuations P[XntnB]P[X_{n} \in t_{n}B], instead of the usual estimates for the rate of exponential decay log(P[XntnB])\log( P[X_{n}\in t_{n}B]). Our approach provides us with a systematic way to characterise the normality zone, that is the zone in which the Gaussian approximation for the tails is still valid. Besides, the residue function measures the extent to which this approximation fails to hold at the edge of the normality zone. The first sections of the article are devoted to a proof of these abstract results and comparisons with existing results. We then propose new examples covered by this theory and coming from various areas of mathematics: classical probability theory, number theory (statistics of additive arithmetic functions), combinatorics (statistics of random permutations), random matrix theory (characteristic polynomials of random matrices in compact Lie groups), graph theory (number of subgraphs in a random Erd\H{o}s-R\'enyi graph), and non-commutative probability theory (asymptotics of random character values of symmetric groups). In particular, we complete our theory of precise deviations by a concrete method of cumulants and dependency graphs, which applies to many examples of sums of "weakly dependent" random variables. The large number as well as the variety of examples hint at a universality class for second order fluctuations.Comment: 103 pages. New (final) version: multiple small improvements ; a new section on mod-Gaussian convergence coming from the factorization of the generating function ; the multi-dimensional results have been moved to a forthcoming paper ; and the introduction has been reworke
    corecore