57,040 research outputs found

    Fairness-aware scheduling on single-ISA heterogeneous multi-cores

    Get PDF
    Single-ISA heterogeneous multi-cores consisting of small (e.g., in-order) and big (e.g., out-of-order) cores dramatically improve energy- and power-efficiency by scheduling workloads on the most appropriate core type. A significant body of recent work has focused on improving system throughput through scheduling. However, none of the prior work has looked into fairness. Yet, guaranteeing that all threads make equal progress on heterogeneous multi-cores is of utmost importance for both multi-threaded and multi-program workloads to improve performance and quality-of-service. Furthermore, modern operating systems affinitize workloads to cores (pinned scheduling) which dramatically affects fairness on heterogeneous multi-cores. In this paper, we propose fairness-aware scheduling for single-ISA heterogeneous multi-cores, and explore two flavors for doing so. Equal-time scheduling runs each thread or workload on each core type for an equal fraction of the time, whereas equal-progress scheduling strives at getting equal amounts of work done on each core type. Our experimental results demonstrate an average 14% (and up to 25%) performance improvement over pinned scheduling through fairness-aware scheduling for homogeneous multi-threaded workloads; equal-progress scheduling improves performance by 32% on average for heterogeneous multi-threaded workloads. Further, we report dramatic improvements in fairness over prior scheduling proposals for multi-program workloads, while achieving system throughput comparable to throughput-optimized scheduling, and an average 21% improvement in throughput over pinned scheduling

    Quantifying human mobility resilience to extreme events using geo-located social media data

    No full text

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    A cell outage management framework for dense heterogeneous networks

    Get PDF
    In this paper, we present a novel cell outage management (COM) framework for heterogeneous networks with split control and data planes-a candidate architecture for meeting future capacity, quality-of-service, and energy efficiency demands. In such an architecture, the control and data functionalities are not necessarily handled by the same node. The control base stations (BSs) manage the transmission of control information and user equipment (UE) mobility, whereas the data BSs handle UE data. An implication of this split architecture is that an outage to a BS in one plane has to be compensated by other BSs in the same plane. Our COM framework addresses this challenge by incorporating two distinct cell outage detection (COD) algorithms to cope with the idiosyncrasies of both data and control planes. The COD algorithm for control cells leverages the relatively larger number of UEs in the control cell to gather large-scale minimization-of-drive-test report data and detects an outage by applying machine learning and anomaly detection techniques. To improve outage detection accuracy, we also investigate and compare the performance of two anomaly-detecting algorithms, i.e., k-nearest-neighbor- and local-outlier-factor-based anomaly detectors, within the control COD. On the other hand, for data cell COD, we propose a heuristic Grey-prediction-based approach, which can work with the small number of UE in the data cell, by exploiting the fact that the control BS manages UE-data BS connectivity and by receiving a periodic update of the received signal reference power statistic between the UEs and data BSs in its coverage. The detection accuracy of the heuristic data COD algorithm is further improved by exploiting the Fourier series of the residual error that is inherent to a Grey prediction model. Our COM framework integrates these two COD algorithms with a cell outage compensation (COC) algorithm that can be applied to both planes. Our COC solution utilizes an actor-critic-based reinforcement learning algorithm, which optimizes the capacity and coverage of the identified outage zone in a plane, by adjusting the antenna gain and transmission power of the surrounding BSs in that plane. The simulation results show that the proposed framework can detect both data and control cell outage and compensate for the detected outage in a reliable manner
    • …
    corecore