2 research outputs found

    A Framework for Super-Resolution of Scalable Video via Sparse Reconstruction of Residual Frames

    Full text link
    This paper introduces a framework for super-resolution of scalable video based on compressive sensing and sparse representation of residual frames in reconnaissance and surveillance applications. We exploit efficient compressive sampling and sparse reconstruction algorithms to super-resolve the video sequence with respect to different compression rates. We use the sparsity of residual information in residual frames as the key point in devising our framework. Moreover, a controlling factor as the compressibility threshold to control the complexity-performance trade-off is defined. Numerical experiments confirm the efficiency of the proposed framework in terms of the compression rate as well as the quality of reconstructed video sequence in terms of PSNR measure. The framework leads to a more efficient compression rate and higher video quality compared to other state-of-the-art algorithms considering performance-complexity trade-offs.Comment: IEEE Military Communications Conference, MILCOM, 201

    ComSens: Exploiting Pilot Diversity for Pervasive Integration of Communication and Sensing in MIMO-TDD-Frameworks

    Full text link
    In this paper, we propose a fully-integrated radar and communication system -- named ComSens. We utilize two different pilot sequences (one for uplink and one for downlink) with the condition that they must be uncorrelated to each other. Within such a framework, the signal received from end-user and the back-scattered signal from the desired objects have uncorrelated pilots. Thus, the base-station is able to distinguish data signal from user and back-scattered signal from object. We assume a time division duplex (TDD) framework. The pilot sequences are designed for MIMO channels. We evaluate channel MSE as a figure of merit for communication system. We also show that the designed pilots are uncorrelated for a range of time lags. Moreover, designed uplink pilot has negligible autocorrelation for a range of time lags leading to an impulse-like autocorrelation for radar sensing.Comment: To be published on IEEE Milcom 201
    corecore