94,078 research outputs found

    Multiwinner Voting with Fairness Constraints

    Full text link
    Multiwinner voting rules are used to select a small representative subset of candidates or items from a larger set given the preferences of voters. However, if candidates have sensitive attributes such as gender or ethnicity (when selecting a committee), or specified types such as political leaning (when selecting a subset of news items), an algorithm that chooses a subset by optimizing a multiwinner voting rule may be unbalanced in its selection -- it may under or over represent a particular gender or political orientation in the examples above. We introduce an algorithmic framework for multiwinner voting problems when there is an additional requirement that the selected subset should be "fair" with respect to a given set of attributes. Our framework provides the flexibility to (1) specify fairness with respect to multiple, non-disjoint attributes (e.g., ethnicity and gender) and (2) specify a score function. We study the computational complexity of this constrained multiwinner voting problem for monotone and submodular score functions and present several approximation algorithms and matching hardness of approximation results for various attribute group structure and types of score functions. We also present simulations that suggest that adding fairness constraints may not affect the scores significantly when compared to the unconstrained case.Comment: The conference version of this paper appears in IJCAI-ECAI 201

    Boosting Few-shot Action Recognition with Graph-guided Hybrid Matching

    Full text link
    Class prototype construction and matching are core aspects of few-shot action recognition. Previous methods mainly focus on designing spatiotemporal relation modeling modules or complex temporal alignment algorithms. Despite the promising results, they ignored the value of class prototype construction and matching, leading to unsatisfactory performance in recognizing similar categories in every task. In this paper, we propose GgHM, a new framework with Graph-guided Hybrid Matching. Concretely, we learn task-oriented features by the guidance of a graph neural network during class prototype construction, optimizing the intra- and inter-class feature correlation explicitly. Next, we design a hybrid matching strategy, combining frame-level and tuple-level matching to classify videos with multivariate styles. We additionally propose a learnable dense temporal modeling module to enhance the video feature temporal representation to build a more solid foundation for the matching process. GgHM shows consistent improvements over other challenging baselines on several few-shot datasets, demonstrating the effectiveness of our method. The code will be publicly available at https://github.com/jiazheng-xing/GgHM.Comment: Accepted by ICCV202

    Node Graph Optimization Using Differentiable Proxies

    Full text link
    Graph-based procedural materials are ubiquitous in content production industries. Procedural models allow the creation of photorealistic materials with parametric control for flexible editing of appearance. However, designing a specific material is a time-consuming process in terms of building a model and fine-tuning parameters. Previous work [Hu et al. 2022; Shi et al. 2020] introduced material graph optimization frameworks for matching target material samples. However, these previous methods were limited to optimizing differentiable functions in the graphs. In this paper, we propose a fully differentiable framework which enables end-to-end gradient based optimization of material graphs, even if some functions of the graph are non-differentiable. We leverage the Differentiable Proxy, a differentiable approximator of a non-differentiable black-box function. We use our framework to match structure and appearance of an output material to a target material, through a multi-stage differentiable optimization. Differentiable Proxies offer a more general optimization solution to material appearance matching than previous work

    SMART: A statistical framework for optimal design matrix generation with application to fMRI

    Full text link
    The general linear model (GLM) is a well established tool for analyzing functional magnetic resonance imaging (fMRI) data. Most fMRI analyses via GLM proceed in a massively univariate fashion where the same design matrix is used for analyzing data from each voxel. A major limitation of this approach is the locally varying nature of signals of interest as well as associated confounds. This local variability results in a potentially large bias and uncontrolled increase in variance for the contrast of interest. The main contributions of this paper are two fold (1) We develop a statistical framework called SMART that enables estimation of an optimal design matrix while explicitly controlling the bias variance decomposition over a set of potential design matrices and (2) We develop and validate a numerical algorithm for computing optimal design matrices for general fMRI data sets. The implications of this framework include the ability to match optimally the magnitude of underlying signals to their true magnitudes while also matching the "null" signals to zero size thereby optimizing both the sensitivity and specificity of signal detection. By enabling the capture of multiple profiles of interest using a single contrast (as opposed to an F-test) in a way that optimizes for both bias and variance enables the passing of first level parameter estimates and their variances to the higher level for group analysis which is not possible using F-tests. We demonstrate the application of this approach to in vivo pharmacological fMRI data capturing the acute response to a drug infusion, to task-evoked, block design fMRI and to the estimation of a haemodynamic response function (HRF) response in event-related fMRI. Our framework is quite general and has potentially wide applicability to a variety of disciplines.Comment: 68 pages, 34 figure
    • …
    corecore