27,925 research outputs found

    Multilevel Markov Chain Monte Carlo Method for High-Contrast Single-Phase Flow Problems

    Full text link
    In this paper we propose a general framework for the uncertainty quantification of quantities of interest for high-contrast single-phase flow problems. It is based on the generalized multiscale finite element method (GMsFEM) and multilevel Monte Carlo (MLMC) methods. The former provides a hierarchy of approximations of different resolution, whereas the latter gives an efficient way to estimate quantities of interest using samples on different levels. The number of basis functions in the online GMsFEM stage can be varied to determine the solution resolution and the computational cost, and to efficiently generate samples at different levels. In particular, it is cheap to generate samples on coarse grids but with low resolution, and it is expensive to generate samples on fine grids with high accuracy. By suitably choosing the number of samples at different levels, one can leverage the expensive computation in larger fine-grid spaces toward smaller coarse-grid spaces, while retaining the accuracy of the final Monte Carlo estimate. Further, we describe a multilevel Markov chain Monte Carlo method, which sequentially screens the proposal with different levels of approximations and reduces the number of evaluations required on fine grids, while combining the samples at different levels to arrive at an accurate estimate. The framework seamlessly integrates the multiscale features of the GMsFEM with the multilevel feature of the MLMC methods following the work in \cite{ketelson2013}, and our numerical experiments illustrate its efficiency and accuracy in comparison with standard Monte Carlo estimates.Comment: 29 pages, 6 figure

    One-bit Distributed Sensing and Coding for Field Estimation in Sensor Networks

    Full text link
    This paper formulates and studies a general distributed field reconstruction problem using a dense network of noisy one-bit randomized scalar quantizers in the presence of additive observation noise of unknown distribution. A constructive quantization, coding, and field reconstruction scheme is developed and an upper-bound to the associated mean squared error (MSE) at any point and any snapshot is derived in terms of the local spatio-temporal smoothness properties of the underlying field. It is shown that when the noise, sensor placement pattern, and the sensor schedule satisfy certain weak technical requirements, it is possible to drive the MSE to zero with increasing sensor density at points of field continuity while ensuring that the per-sensor bitrate and sensing-related network overhead rate simultaneously go to zero. The proposed scheme achieves the order-optimal MSE versus sensor density scaling behavior for the class of spatially constant spatio-temporal fields.Comment: Fixed typos, otherwise same as V2. 27 pages (in one column review format), 4 figures. Submitted to IEEE Transactions on Signal Processing. Current version is updated for journal submission: revised author list, modified formulation and framework. Previous version appeared in Proceedings of Allerton Conference On Communication, Control, and Computing 200

    High-resolution distributed sampling of bandlimited fields with low-precision sensors

    Full text link
    The problem of sampling a discrete-time sequence of spatially bandlimited fields with a bounded dynamic range, in a distributed, communication-constrained, processing environment is addressed. A central unit, having access to the data gathered by a dense network of fixed-precision sensors, operating under stringent inter-node communication constraints, is required to reconstruct the field snapshots to maximum accuracy. Both deterministic and stochastic field models are considered. For stochastic fields, results are established in the almost-sure sense. The feasibility of having a flexible tradeoff between the oversampling rate (sensor density) and the analog-to-digital converter (ADC) precision, while achieving an exponential accuracy in the number of bits per Nyquist-interval per snapshot is demonstrated. This exposes an underlying ``conservation of bits'' principle: the bit-budget per Nyquist-interval per snapshot (the rate) can be distributed along the amplitude axis (sensor-precision) and space (sensor density) in an almost arbitrary discrete-valued manner, while retaining the same (exponential) distortion-rate characteristics. Achievable information scaling laws for field reconstruction over a bounded region are also derived: With N one-bit sensors per Nyquist-interval, Θ(logN)\Theta(\log N) Nyquist-intervals, and total network bitrate Rnet=Θ((logN)2)R_{net} = \Theta((\log N)^2) (per-sensor bitrate Θ((logN)/N)\Theta((\log N)/N)), the maximum pointwise distortion goes to zero as D=O((logN)2/N)D = O((\log N)^2/N) or D=O(Rnet2βRnet)D = O(R_{net} 2^{-\beta \sqrt{R_{net}}}). This is shown to be possible with only nearest-neighbor communication, distributed coding, and appropriate interpolation algorithms. For a fixed, nonzero target distortion, the number of fixed-precision sensors and the network rate needed is always finite.Comment: 17 pages, 6 figures; paper withdrawn from IEEE Transactions on Signal Processing and re-submitted to the IEEE Transactions on Information Theor

    Information-theoretic analysis of MIMO channel sounding

    Full text link
    The large majority of commercially available multiple-input multiple-output (MIMO) radio channel measurement devices (sounders) is based on time-division multiplexed switching (TDMS) of a single transmit/receive radio-frequency chain into the elements of a transmit/receive antenna array. While being cost-effective, such a solution can cause significant measurement errors due to phase noise and frequency offset in the local oscillators. In this paper, we systematically analyze the resulting errors and show that, in practice, overestimation of channel capacity by several hundred percent can occur. Overestimation is caused by phase noise (and to a lesser extent frequency offset) leading to an increase of the MIMO channel rank. Our analysis furthermore reveals that the impact of phase errors is, in general, most pronounced if the physical channel has low rank (typical for line-of-sight or poor scattering scenarios). The extreme case of a rank-1 physical channel is analyzed in detail. Finally, we present measurement results obtained from a commercially employed TDMS-based MIMO channel sounder. In the light of the findings of this paper, the results obtained through MIMO channel measurement campaigns using TDMS-based channel sounders should be interpreted with great care.Comment: 99 pages, 14 figures, submitted to IEEE Transactions on Information Theor

    An error indicator-based adaptive reduced order model for nonlinear structural mechanics -- application to high-pressure turbine blades

    Full text link
    The industrial application motivating this work is the fatigue computation of aircraft engines' high-pressure turbine blades. The material model involves nonlinear elastoviscoplastic behavior laws, for which the parameters depend on the temperature. For this application, the temperature loading is not accurately known and can reach values relatively close to the creep temperature: important nonlinear effects occur and the solution strongly depends on the used thermal loading. We consider a nonlinear reduced order model able to compute, in the exploitation phase, the behavior of the blade for a new temperature field loading. The sensitivity of the solution to the temperature makes {the classical unenriched proper orthogonal decomposition method} fail. In this work, we propose a new error indicator, quantifying the error made by the reduced order model in computational complexity independent of the size of the high-fidelity reference model. In our framework, when the {error indicator} becomes larger than a given tolerance, the reduced order model is updated using one time step solution of the high-fidelity reference model. The approach is illustrated on a series of academic test cases and applied on a setting of industrial complexity involving 5 million degrees of freedom, where the whole procedure is computed in parallel with distributed memory

    Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods

    Get PDF
    In this paper, we discuss a general multiscale model reduction framework based on multiscale finite element methods. We give a brief overview of related multiscale methods. Due to page limitations, the overview focuses on a few related methods and is not intended to be comprehensive. We present a general adaptive multiscale model reduction framework, the Generalized Multiscale Finite Element Method. Besides the method's basic outline, we discuss some important ingredients needed for the method's success. We also discuss several applications. The proposed method allows performing local model reduction in the presence of high contrast and no scale separation

    Cluster-based reduced-order modelling of a mixing layer

    Full text link
    We propose a novel cluster-based reduced-order modelling (CROM) strategy of unsteady flows. CROM combines the cluster analysis pioneered in Gunzburger's group (Burkardt et al. 2006) and and transition matrix models introduced in fluid dynamics in Eckhardt's group (Schneider et al. 2007). CROM constitutes a potential alternative to POD models and generalises the Ulam-Galerkin method classically used in dynamical systems to determine a finite-rank approximation of the Perron-Frobenius operator. The proposed strategy processes a time-resolved sequence of flow snapshots in two steps. First, the snapshot data are clustered into a small number of representative states, called centroids, in the state space. These centroids partition the state space in complementary non-overlapping regions (centroidal Voronoi cells). Departing from the standard algorithm, the probabilities of the clusters are determined, and the states are sorted by analysis of the transition matrix. Secondly, the transitions between the states are dynamically modelled using a Markov process. Physical mechanisms are then distilled by a refined analysis of the Markov process, e.g. using finite-time Lyapunov exponent and entropic methods. This CROM framework is applied to the Lorenz attractor (as illustrative example), to velocity fields of the spatially evolving incompressible mixing layer and the three-dimensional turbulent wake of a bluff body. For these examples, CROM is shown to identify non-trivial quasi-attractors and transition processes in an unsupervised manner. CROM has numerous potential applications for the systematic identification of physical mechanisms of complex dynamics, for comparison of flow evolution models, for the identification of precursors to desirable and undesirable events, and for flow control applications exploiting nonlinear actuation dynamics.Comment: 48 pages, 30 figures. Revised version with additional material. Accepted for publication in Journal of Fluid Mechanic

    Randomized Dynamic Mode Decomposition

    Full text link
    This paper presents a randomized algorithm for computing the near-optimal low-rank dynamic mode decomposition (DMD). Randomized algorithms are emerging techniques to compute low-rank matrix approximations at a fraction of the cost of deterministic algorithms, easing the computational challenges arising in the area of `big data'. The idea is to derive a small matrix from the high-dimensional data, which is then used to efficiently compute the dynamic modes and eigenvalues. The algorithm is presented in a modular probabilistic framework, and the approximation quality can be controlled via oversampling and power iterations. The effectiveness of the resulting randomized DMD algorithm is demonstrated on several benchmark examples of increasing complexity, providing an accurate and efficient approach to extract spatiotemporal coherent structures from big data in a framework that scales with the intrinsic rank of the data, rather than the ambient measurement dimension. For this work we assume that the dynamics of the problem under consideration is evolving on a low-dimensional subspace that is well characterized by a fast decaying singular value spectrum
    corecore