3 research outputs found

    A Framework for In-Network Management in Heterogeneous Future Communication Networks

    Get PDF
    Future communication networks will be composed of a diversity of highly heterogeneous network variants, ranging from energy constrained wireless sensor networks to large-scale wide area networks. The fact that the size and complexity of such networks will experience tremendous growth will eventually render existing traditional network management paradigms unfeasible. We propose the radically new paradigm of in-network management, which targets the embedding of self-management capabilities deep inside the network nodes. In this paper, we focus on our framework for in-network management, which allows management logic to be embedded and executed within network nodes. Based on a specific use-case of bio-inspired network management, we demonstrate how our framework can be exploited in a network failure scenario using quorum sensing and chemotaxis

    Architectural Principles and Elements of In-Network Management

    Get PDF
    Recent endeavors in addressing the challenges of the current and future Internet pursue a clean slate design methodology. Simultaneously, it is argued that the Internet is unlikely to be changed in one fell swoop and that its next generation requires an evolutionary design approach. Recognizing both positions, we claim that cleanness and evolution are not mutually exclusive, but rather complementary and indispensable properties for sustainable management in the future Internet. In this paper we propose the in-network management (INM) paradigm, which adopts a clean slate design approach to the management of future communication networks that is brought about by evolutionary design principles. The proposed paradigm builds on embedded management capabilities to address the intrinsic nature, and hence, close relationship between the network and its management. At the same time, INM assists in the gradual adoption of embedded self-managing processes to progressively achieve adequate and practical degrees of INM. We demonstrate how INM can be exploited in current and future network management by its application to P2P networks

    A Framework for In-Network Management in Heterogeneous Future Communication Networks

    No full text
    Future communication networks will be composed of a diversity of highly heterogeneous network variants, ranging from energy constrained wireless sensor networks to large-scale wide area networks. The fact that the size and complexity of such networks will experience tremendous growth will eventually render existing traditional network management paradigms unfeasible. We propose the radically new paradigm of in-network management, which targets the embedding of self-management capabilities deep inside the network nodes. In this paper, we focus on our framework for in-network management, which allows management logic to be embedded and executed within network nodes. Based on a specific use-case of bio-inspired network management, we demonstrate how our framework can be exploited in a network failure scenario using quorum sensing and chemotaxis
    corecore