914 research outputs found

    On stable reconstructions from nonuniform Fourier measurements

    Full text link
    We consider the problem of recovering a compactly-supported function from a finite collection of pointwise samples of its Fourier transform taking nonuniformly. First, we show that under suitable conditions on the sampling frequencies - specifically, their density and bandwidth - it is possible to recover any such function ff in a stable and accurate manner in any given finite-dimensional subspace; in particular, one which is well suited for approximating ff. In practice, this is carried out using so-called nonuniform generalized sampling (NUGS). Second, we consider approximation spaces in one dimension consisting of compactly supported wavelets. We prove that a linear scaling of the dimension of the space with the sampling bandwidth is both necessary and sufficient for stable and accurate recovery. Thus wavelets are up to constant factors optimal spaces for reconstruction

    Recovering piecewise smooth functions from nonuniform Fourier measurements

    Full text link
    In this paper, we consider the problem of reconstructing piecewise smooth functions to high accuracy from nonuniform samples of their Fourier transform. We use the framework of nonuniform generalized sampling (NUGS) to do this, and to ensure high accuracy we employ reconstruction spaces consisting of splines or (piecewise) polynomials. We analyze the relation between the dimension of the reconstruction space and the bandwidth of the nonuniform samples, and show that it is linear for splines and piecewise polynomials of fixed degree, and quadratic for piecewise polynomials of varying degree

    Computing weak distances between the 2-sphere and its nonsmooth approximations

    Full text link
    A novel algorithm is proposed for quantitative comparisons between compact surfaces embedded in the three-dimensional Euclidian space. The key idea is to identify those objects with the associated surface measures and compute distances between them using the Fourier transform on the ambient space. In particular, the inhomogeneous Sobolev norms of negative order are approximated from data in the frequency space, which amounts to comparing measures after appropriate smoothing. Such Fourier-based distances allow several advantages including high accuracy due to fast-converging numerical quadrature rules, acceleration by the nonuniform fast Fourier transform, parallelization on massively parallel architectures. In numerical experiments, the 2-sphere, which is an example whose Fourier transform is explicitly known, is compared with its icosahedral discretization, and it is observed that the piecewise linear approximations converge to the smooth object at the quadratic rate up to small truncations.Comment: 14 pages, 4 figure
    corecore