3,525 research outputs found

    Mutual Authentication in RFID: Security and Privacy

    Get PDF
    In RFID protocols, tags identify and authenticate themselves to readers. At Asiacrypt 2007, Vaudenay studied security and privacy models for these protocols. We extend this model to protocols which offer reader authentication to tags. Whenever corruption is allowed, we prove that secure protocols cannot protect privacy unless we assume tags have a temporary memory which vanishes by itself. Under this assumption, we study several protocols. We enrich a few basic protocols to get secure mutual authentication RFID protocols which achieve weak privacy based on pseudorandom functions only, narrow- destructive privacy based on random oracles, and narrow-strong and forward privacy based on public-key cryptography

    Breaking Anonymity of Some Recent Lightweight RFID Authentication Protocols

    Get PDF
    Due to their impressive advantages, Radio Frequency IDentification (RFID) systems are ubiquitously found in various novel applications. These applications are usually in need of quick and accurate authentication or identification. In many cases, it has been shown that if such systems are not properly designed, an adversary can cause security and privacy concerns for end-users. In order to deal with these concerns, impressive endeavors have been made which have resulted in various RFID authentications being proposed. In this study, we analyze three lightweight RFID authentication protocols proposed in Wireless Personal Communications (2014), Computers & Security (2015) and Wireless Networks (2016). We show that none of the studied protocols provides the desired security and privacy required by the end-users. We present various security and privacy attacks such as secret parameter reveal, impersonation, DoS, traceability, and forward traceability against the studied protocols. Our attacks are mounted in the Ouafi–Phan RFID formal privacy model which is a modified version of the well-known Juels–Weis privacy model

    A Survey of RFID Authentication Protocols Based on Hash-Chain Method

    Get PDF
    Security and privacy are the inherent problems in RFID communications. There are several protocols have been proposed to overcome those problems. Hash chain is commonly employed by the protocols to improve security and privacy for RFID authentication. Although the protocols able to provide specific solution for RFID security and privacy problems, they fail to provide integrated solution. This article is a survey to closely observe those protocols in terms of its focus and limitations.Comment: Third ICCIT 2008 International Conference on Convergence and Hybrid Information Technolog

    An efficient and private RFID authentication protocol supporting ownership transfer

    Get PDF
    Radio Frequency IDentification (RFID) systems are getting pervasively deployed in many daily life applications. But this increased usage of RFID systems brings some serious problems together, security and privacy. In some applications, ownership transfer of RFID labels is sine qua non need. Specifically, the owner of RFID tag might be required to change several times during its lifetime. Besides, after ownership transfer, the authentication protocol should also prevent the old owner to trace the tags and disallow the new owner to trace old transactions of the tags. On the other hand, while achieving privacy and security concerns, the computation complexity should be considered. In order to resolve these issues, numerous authentication protocols have been proposed in the literature. Many of them failed and their computation load on the server side is very high. Motivated by this need, we propose an RFID mutual authentication protocol to provide ownership transfer. In our protocol, the server needs only a constant-time complexity for identification when the tag and server are synchronized. In case of ownership transfer, our protocol preserves both old and new owners’ privacy. Our protocol is backward untraceable against a strong adversary who compromise tag, and also forward untraceable under an assumption

    Cryptanalysis of two mutual authentication protocols for low-cost RFID

    Full text link
    Radio Frequency Identification (RFID) is appearing as a favorite technology for automated identification, which can be widely applied to many applications such as e-passport, supply chain management and ticketing. However, researchers have found many security and privacy problems along RFID technology. In recent years, many researchers are interested in RFID authentication protocols and their security flaws. In this paper, we analyze two of the newest RFID authentication protocols which proposed by Fu et al. and Li et al. from several security viewpoints. We present different attacks such as desynchronization attack and privacy analysis over these protocols.Comment: 17 pages, 2 figures, 1 table, International Journal of Distributed and Parallel system

    A Cloud-based RFID Authentication Protocol with Insecure Communication Channels

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Radio Frequency Identification (RFID) has becomea widespread technology to automatically identify objects and withthe development of cloud computing, cloud-based RFID systemsattract more research these days. Several cloud-based RFIDauthentication protocols have been proposed to address privacyand security properties in the environment where the cloudprovider is untrusted therefore the tag’s data are encrypted andanonymously stored in the cloud database. However, most of thecloud-based RFID authentication protocols assume securecommunication channels between the reader and the cloud server.To protect data transmission between the reader and the cloudserver without any help from a third party, this paper proposes acloud-based RFID authentication protocol with insecurecommunication channels (cloud-RAPIC) between the reader and the cloud server. The cloud-RAPIC protocol preserves tag privacyeven when the tag does not update its identification. The cloudRAPIC protocol has been analyzed using the UPriv model andAVISPA verification tool which have proved that the protocolpreserves tag privacy and protects data secrecy
    corecore