2 research outputs found

    A Fluid-Structure Interaction Index of Coronary Plaque Rupture

    No full text
    The impact of coupled blood flow and structural dynamics on coronary plaque is investigated with the objective of defining a unique index for characterizing plaque rupture. Two-dimensional non-circular lumen models of native, moderate and severely stenosed human coronary arteries are investigated. The flow and structural analyses are performed simultaneously using well-validated commercial software. New flow-structure interaction (FSI) indices are defined by normalizing the predicted hemodynamic shear stress with the structural stresses. The results predict that the plaques investigated are potentially vulnerable to rupture at 40-45% stenosis levels. The predicted trend is consistent with clinical observations, indicating that the selected FSI index has the potential to characterize plaque rupture when properly established. © 2010 Springer-Verlag

    A Fluid-Structure Interaction Index Of Coronary Plaque Rupture

    No full text
    The impact of coupled blood flow and structural dynamics on coronary plaque is investigated with the objective of defining a unique index for characterizing plaque rupture. Two-dimensional non-circular lumen models of native, moderate and severely stenosed human coronary arteries are investigated. The flow and structural analyses are performed simultaneously using well-validated commercial software. New flow-structure interaction (FSI) indices are defined by normalizing the predicted hemodynamic shear stress with the structural stresses. The results predict that the plaques investigated are potentially vulnerable to rupture at 40-45% stenosis levels. The predicted trend is consistent with clinical observations, indicating that the selected FSI index has the potential to characterize plaque rupture when properly established. © 2010 Springer-Verlag
    corecore