5,815 research outputs found

    Omnidirectional Sensory and Motor Volumes in Electric Fish

    Get PDF
    Active sensing organisms, such as bats, dolphins, and weakly electric fish, generate a 3-D space for active sensation by emitting self-generated energy into the environment. For a weakly electric fish, we demonstrate that the electrosensory space for prey detection has an unusual, omnidirectional shape. We compare this sensory volume with the animal's motor volume—the volume swept out by the body over selected time intervals and over the time it takes to come to a stop from typical hunting velocities. We find that the motor volume has a similar omnidirectional shape, which can be attributed to the fish's backward-swimming capabilities and body dynamics. We assessed the electrosensory space for prey detection by analyzing simulated changes in spiking activity of primary electrosensory afferents during empirically measured and synthetic prey capture trials. The animal's motor volume was reconstructed from video recordings of body motion during prey capture behavior. Our results suggest that in weakly electric fish, there is a close connection between the shape of the sensory and motor volumes. We consider three general spatial relationships between 3-D sensory and motor volumes in active and passive-sensing animals, and we examine hypotheses about these relationships in the context of the volumes we quantify for weakly electric fish. We propose that the ratio of the sensory volume to the motor volume provides insight into behavioral control strategies across all animals

    Acoustic behavior of melon-headed whales varies on a diel cycle.

    Get PDF
    Many terrestrial and marine species have a diel activity pattern, and their acoustic signaling follows their current behavioral state. Whistles and echolocation clicks on long-term recordings produced by melon-headed whales (Peponocephala electra) at Palmyra Atoll indicated that these signals were used selectively during different phases of the day, strengthening the idea of nighttime foraging and daytime resting with afternoon socializing for this species. Spectral features of their echolocation clicks changed from day to night, shifting the median center frequency up. Additionally, click received levels increased with increasing ambient noise during both day and night. Ambient noise over a wide frequency band was on average higher at night. The diel adjustment of click features might be a reaction to acoustic masking caused by these nighttime sounds. Similar adaptations have been documented for numerous taxa in response to noise. Or it could be, unrelated, an increase in biosonar source levels and with it a shift in center frequency to enhance detection distances during foraging at night. Call modifications in intensity, directionality, frequency, and duration according to echolocation task are well established for bats. This finding indicates that melon-headed whales have flexibility in their acoustic behavior, and they collectively and repeatedly adapt their signals from day- to nighttime circumstances

    Bat Algorithm: Literature Review and Applications

    Full text link
    Bat algorithm (BA) is a bio-inspired algorithm developed by Yang in 2010 and BA has been found to be very efficient. As a result, the literature has expanded significantly in the last 3 years. This paper provides a timely review of the bat algorithm and its new variants. A wide range of diverse applications and case studies are also reviewed and summarized briefly here. Further research topics are also discussed.Comment: 10 page

    A New Metaheuristic Bat-Inspired Algorithm

    Full text link
    Metaheuristic algorithms such as particle swarm optimization, firefly algorithm and harmony search are now becoming powerful methods for solving many tough optimization problems. In this paper, we propose a new metaheuristic method, the Bat Algorithm, based on the echolocation behaviour of bats. We also intend to combine the advantages of existing algorithms into the new bat algorithm. After a detailed formulation and explanation of its implementation, we will then compare the proposed algorithm with other existing algorithms, including genetic algorithms and particle swarm optimization. Simulations show that the proposed algorithm seems much superior to other algorithms, and further studies are also discussed.Comment: 10 pages, 2 figure

    Firefly Algorithm: Recent Advances and Applications

    Full text link
    Nature-inspired metaheuristic algorithms, especially those based on swarm intelligence, have attracted much attention in the last ten years. Firefly algorithm appeared in about five years ago, its literature has expanded dramatically with diverse applications. In this paper, we will briefly review the fundamentals of firefly algorithm together with a selection of recent publications. Then, we discuss the optimality associated with balancing exploration and exploitation, which is essential for all metaheuristic algorithms. By comparing with intermittent search strategy, we conclude that metaheuristics such as firefly algorithm are better than the optimal intermittent search strategy. We also analyse algorithms and their implications for higher-dimensional optimization problems.Comment: 15 page

    Mycobiome of the Bat White Nose Syndrome (WNS) Affected Caves and Mines reveals High Diversity of Fungi and Local Adaptation by the Fungal Pathogen Pseudogymnoascus (Geomyces) destructans

    Full text link
    The investigations of the bat White Nose Syndrome (WNS) have yet to provide answers as to how the causative fungus Pseudogymnoascus (Geomyces) destructans (Pd) first appeared in the Northeast and how a single clone has spread rapidly in the US and Canada. We aimed to catalogue Pd and all other fungi (mycobiome) by the culture-dependent (CD) and culture-independent (CI) methods in four Mines and two Caves from the epicenter of WNS zoonotic. Six hundred sixty-five fungal isolates were obtained by CD method including the live recovery of Pd. Seven hundred three nucleotide sequences that met the definition of operational taxonomic units (OTUs) were recovered by CI methods. Most OTUs belonged to unidentified clones deposited in the databases as environmental nucleic acid sequences (ENAS). The core mycobiome of WNS affected sites comprised of 46 species of fungi from 31 genera recovered in culture, and 17 fungal genera and 31 ENAS identified from clone libraries. Fungi such as Arthroderma spp., Geomyces spp., Kernia spp., Mortierella spp., Penicillium spp., and Verticillium spp. were predominant in culture while Ganoderma spp., Geomyces spp., Mortierella spp., Penicillium spp. and Trichosporon spp. were abundant is clone libraries. Alpha diversity analyses from CI data revealed that fungal community structure was highly diverse. However, the true species diversity remains undetermined due to under sampling. The frequent recovery of Pd indicated that the pathogen has adapted to WNS-afflicted habitats. Further, this study supports the hypothesis that Pd is an introduced species. These findings underscore the need for integrated WNS control measures that target both bats and the fungal pathogen.Comment: 59 pages, 7figure
    • …
    corecore