2 research outputs found

    Learning implicitly in reasoning in PAC-Semantics

    Full text link
    We consider the problem of answering queries about formulas of propositional logic based on background knowledge partially represented explicitly as other formulas, and partially represented as partially obscured examples independently drawn from a fixed probability distribution, where the queries are answered with respect to a weaker semantics than usual -- PAC-Semantics, introduced by Valiant (2000) -- that is defined using the distribution of examples. We describe a fairly general, efficient reduction to limited versions of the decision problem for a proof system (e.g., bounded space treelike resolution, bounded degree polynomial calculus, etc.) from corresponding versions of the reasoning problem where some of the background knowledge is not explicitly given as formulas, only learnable from the examples. Crucially, we do not generate an explicit representation of the knowledge extracted from the examples, and so the "learning" of the background knowledge is only done implicitly. As a consequence, this approach can utilize formulas as background knowledge that are not perfectly valid over the distribution---essentially the analogue of agnostic learning here

    Query-driven PAC-Learning for Reasoning

    Full text link
    We consider the problem of learning rules from a data set that support a proof of a given query, under Valiant's PAC-Semantics. We show how any backward proof search algorithm that is sufficiently oblivious to the contents of its knowledge base can be modified to learn such rules while it searches for a proof using those rules. We note that this gives such algorithms for standard logics such as chaining and resolution.Comment: In Fourth International Workshop on Declarative Learning Based Programming (DeLBP 2019
    corecore