2 research outputs found

    Extracting fingerprint features using textures

    Full text link
    Personal identification of individuals is becoming increasingly adopted in society today. Due to the large number of electronic systems that require human identification, faster and more secure identification systems are pursued. Biometrics is based upon the physical characteristics of individuals; of these the fingerprint is the most common as used within law enforcement. Fingerprint-based systems have been introduced into the society but have not been well received due to relatively high rejection rates and false acceptance rates. This limited acceptance of fingerprint identification systems requires new techniques to be investigated to improve this identification method and the acceptance of the technology within society. Electronic fingerprint identification provides a method of identifying an individual within seconds quickly and easily. The fingerprint must be captured instantly to allow the system to identify the individual without any technical user interaction to simplify system operation. The performance of the entire system relies heavily on the quality of the original fingerprint image that is captured digitally. A single fingerprint scan for verification makes it easier for users accessing the system as it replaces the need to remember passwords or authorisation codes. The identification system comprises of several components to perform this function, which includes a fingerprint sensor, processor, feature extraction and verification algorithms. A compact texture feature extraction method will be implemented within an embedded microprocessor-based system for security, performance and cost effective production over currently available commercial fingerprint identification systems. To perform these functions various software packages are available for developing programs for windows-based operating systems but must not constrain to a graphical user interface alone. MATLAB was the software package chosen for this thesis due to its strong mathematical library, data analysis and image analysis libraries and capability. MATLAB enables the complete fingerprint identification system to be developed and implemented within a PC environment and also to be exported at a later date directly to an embedded processing environment. The nucleus of the fingerprint identification system is the feature extraction approach presented in this thesis that uses global texture information unlike traditional local information in minutiae-based identification methods. Commercial solid-state sensors such as the type selected for use in this thesis have a limited contact area with the fingertip and therefore only sample a limited portion of the fingerprint. This limits the number of minutiae that can be extracted from the fingerprint and as such limits the number of common singular points between two impressions of the same fingerprint. The application of texture feature extraction will be tested using variety of fingerprint images to determine the most appropriate format for use within the embedded system. This thesis has focused on designing a fingerprint-based identification system that is highly expandable using the MATLAB environment. The main components that are defined within this thesis are the hardware design, image capture, image processing and feature extraction methods. Selection of the final system components for this electronic fingerprint identification system was determined by using specific criteria to yield the highest performance from an embedded processing environment. These platforms are very cost effective and will allow fingerprint-based identification technology to be implemented in more commercial products that can benefit from the security and simplicity of a fingerprint identification system

    Authentication of Fingerprint Scanners

    Get PDF
    To counter certain security threats in biometric authentication systems, particularly in portable devices (e.g., phones and laptops), we have developed a technology for automated authentication of fingerprint scanners of exactly the same type, manufacturer, and model. The technology uses unique, persistent, and unalterable characteristics of the fingerprint scanners to detect attacks on the scanners, such as detecting an image containing the fingerprint pattern of the legitimate user and acquired with the authentic fingerprint scanner replaced by another image that still contains the fingerprint pattern of the legitimate user but has been acquired with another, unauthentic fingerprint scanner. The technology uses the conventional authentication steps of enrolment and verification, each of which can be implemented in a portable device, a desktop, or a remote server. The technology is extremely accurate, computationally efficient, robust in a wide range of conditions, does not require any hardware modifications, and can be added (as a software add-on) to systems already manufactured and placed into service. We have also implemented the technology in a demonstration prototype for both area and swipe scanners
    corecore