1,491 research outputs found

    Two-Level Text Classification Using Hybrid Machine Learning Techniques

    Get PDF
    Nowadays, documents are increasingly being associated with multi-level category hierarchies rather than a flat category scheme. To access these documents in real time, we need fast automatic methods to navigate these hierarchies. Today’s vast data repositories such as the web also contain many broad domains of data which are quite distinct from each other e.g. medicine, education, sports and politics. Each domain constitutes a subspace of the data within which the documents are similar to each other but quite distinct from the documents in another subspace. The data within these domains is frequently further divided into many subcategories. Subspace Learning is a technique popular with non-text domains such as image recognition to increase speed and accuracy. Subspace analysis lends itself naturally to the idea of hybrid classifiers. Each subspace can be processed by a classifier best suited to the characteristics of that particular subspace. Instead of using the complete set of full space feature dimensions, classifier performances can be boosted by using only a subset of the dimensions. This thesis presents a novel hybrid parallel architecture using separate classifiers trained on separate subspaces to improve two-level text classification. The classifier to be used on a particular input and the relevant feature subset to be extracted is determined dynamically by using a novel method based on the maximum significance value. A novel vector representation which enhances the distinction between classes within the subspace is also developed. This novel system, the Hybrid Parallel Classifier, was compared against the baselines of several single classifiers such as the Multilayer Perceptron and was found to be faster and have higher two-level classification accuracies. The improvement in performance achieved was even higher when dealing with more complex category hierarchies

    Two-level text classification using hybrid machine learning techniques

    Get PDF
    Nowadays, documents are increasingly being associated with multi-level category hierarchies rather than a flat category scheme. To access these documents in real time, we need fast automatic methods to navigate these hierarchies. Today’s vast data repositories such as the web also contain many broad domains of data which are quite distinct from each other e.g. medicine, education, sports and politics. Each domain constitutes a subspace of the data within which the documents are similar to each other but quite distinct from the documents in another subspace. The data within these domains is frequently further divided into many subcategories. Subspace Learning is a technique popular with non-text domains such as image recognition to increase speed and accuracy. Subspace analysis lends itself naturally to the idea of hybrid classifiers. Each subspace can be processed by a classifier best suited to the characteristics of that particular subspace. Instead of using the complete set of full space feature dimensions, classifier performances can be boosted by using only a subset of the dimensions. This thesis presents a novel hybrid parallel architecture using separate classifiers trained on separate subspaces to improve two-level text classification. The classifier to be used on a particular input and the relevant feature subset to be extracted is determined dynamically by using a novel method based on the maximum significance value. A novel vector representation which enhances the distinction between classes within the subspace is also developed. This novel system, the Hybrid Parallel Classifier, was compared against the baselines of several single classifiers such as the Multilayer Perceptron and was found to be faster and have higher two-level classification accuracies. The improvement in performance achieved was even higher when dealing with more complex category hierarchies.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A scalable meta-classifier for combining search and classification techniques for multi-level text categorization

    Get PDF
    Nowadays, documents are increasingly associated with multi-level category hierarchies rather than a flat category scheme. As the volume and diversity of documents grow, so do the size and complexity of the corresponding category hierarchies. To be able to access such hierarchically classified documents in real-time, we need fast automatic methods to navigate these hierarchies. Today’s data domains are also very different from each other, such as medicine and politics. These distinct domains can be handled by different classifiers. A document representation system which incorporates the inherent category structure of the data should also add useful semantic content to the data vectors and thus lead to better separability of classes. In this paper, we present a scalable meta-classifier to tackle today’s problem of multi-level data classification in the presence of large datasets. To speed up the classification process, we use a search-based method to detect the level-1 category of a test document. For this purpose, we use a category–hierarchy-based vector representation. We evaluate the meta-classifier by scaling to both longer documents as well as to a larger category set and show it to be robust in both cases. We test the architecture of our meta-classifier using six different base classifiers (Random forest, C4.5, multilayer perceptron, naïve Bayes, BayesNet (BN) and PART). We observe that even though there is a very small variation in the performance of different architectures, all of them perform much better than the corresponding single baseline classifiers. We conclude that there is substantial potential in this meta-classifier architecture, rather than the classifiers themselves, which successfully improves classification performance

    Transductive Learning with String Kernels for Cross-Domain Text Classification

    Full text link
    For many text classification tasks, there is a major problem posed by the lack of labeled data in a target domain. Although classifiers for a target domain can be trained on labeled text data from a related source domain, the accuracy of such classifiers is usually lower in the cross-domain setting. Recently, string kernels have obtained state-of-the-art results in various text classification tasks such as native language identification or automatic essay scoring. Moreover, classifiers based on string kernels have been found to be robust to the distribution gap between different domains. In this paper, we formally describe an algorithm composed of two simple yet effective transductive learning approaches to further improve the results of string kernels in cross-domain settings. By adapting string kernels to the test set without using the ground-truth test labels, we report significantly better accuracy rates in cross-domain English polarity classification.Comment: Accepted at ICONIP 2018. arXiv admin note: substantial text overlap with arXiv:1808.0840

    Sparse Bilinear Logistic Regression

    Full text link
    In this paper, we introduce the concept of sparse bilinear logistic regression for decision problems involving explanatory variables that are two-dimensional matrices. Such problems are common in computer vision, brain-computer interfaces, style/content factorization, and parallel factor analysis. The underlying optimization problem is bi-convex; we study its solution and develop an efficient algorithm based on block coordinate descent. We provide a theoretical guarantee for global convergence and estimate the asymptotical convergence rate using the Kurdyka-{\L}ojasiewicz inequality. A range of experiments with simulated and real data demonstrate that sparse bilinear logistic regression outperforms current techniques in several important applications.Comment: 27 pages, 5 figure

    Gibbs Max-margin Topic Models with Data Augmentation

    Full text link
    Max-margin learning is a powerful approach to building classifiers and structured output predictors. Recent work on max-margin supervised topic models has successfully integrated it with Bayesian topic models to discover discriminative latent semantic structures and make accurate predictions for unseen testing data. However, the resulting learning problems are usually hard to solve because of the non-smoothness of the margin loss. Existing approaches to building max-margin supervised topic models rely on an iterative procedure to solve multiple latent SVM subproblems with additional mean-field assumptions on the desired posterior distributions. This paper presents an alternative approach by defining a new max-margin loss. Namely, we present Gibbs max-margin supervised topic models, a latent variable Gibbs classifier to discover hidden topic representations for various tasks, including classification, regression and multi-task learning. Gibbs max-margin supervised topic models minimize an expected margin loss, which is an upper bound of the existing margin loss derived from an expected prediction rule. By introducing augmented variables and integrating out the Dirichlet variables analytically by conjugacy, we develop simple Gibbs sampling algorithms with no restricting assumptions and no need to solve SVM subproblems. Furthermore, each step of the "augment-and-collapse" Gibbs sampling algorithms has an analytical conditional distribution, from which samples can be easily drawn. Experimental results demonstrate significant improvements on time efficiency. The classification performance is also significantly improved over competitors on binary, multi-class and multi-label classification tasks.Comment: 35 page

    Approaches to better context modeling and categorization

    Get PDF

    Clustering Based Classification and Analysis of Data

    Get PDF
    This paper presents Clustering Based Document classification and analysis of data. The proposed Clustering Based classification and analysis of data approach is based on Unsupervised and Supervised Document Classification. In this paper Unsupervised Document and Supervised Document Classification are used. In this approach Document collection, Text Preprocessing, Feature Selection, Indexing, Clustering Process and Results Analysis steps are used. Twenty News group data sets [20] are used in the Experiments. For experimental results analysis evaluated using the Analytical SAS 9.0 Software is used. The Experimental Results show the proposed approach out performs
    corecore