2 research outputs found

    A Fast Simulation Method for the Sum of Subexponential Distributions

    Full text link
    Estimating the probability that a sum of random variables (RVs) exceeds a given threshold is a well-known challenging problem. Closed-form expression of the sum distribution is usually intractable and presents an open problem. A crude Monte Carlo (MC) simulation is the standard technique for the estimation of this type of probability. However, this approach is computationally expensive especially when dealing with rare events (i.e events with very small probabilities). Importance Sampling (IS) is an alternative approach which effectively improves the computational efficiency of the MC simulation. In this paper, we develop a general framework based on IS approach for the efficient estimation of the probability that the sum of independent and not necessarily identically distributed heavy-tailed RVs exceeds a given threshold. The proposed IS approach is based on constructing a new sampling distribution by twisting the hazard rate of the original underlying distribution of each component in the summation. A minmax approach is carried out for the determination of the twisting parameter, for any given threshold. Moreover, using this minmax optimal choice, the estimation of the probability of interest is shown to be asymptotically optimal as the threshold goes to infinity. We also offer some selected simulation results illustrating first the efficiency of the proposed IS approach compared to the naive MC simulation. The near-optimality of the minmax approach is then numerically analyzed

    An Improved Hazard Rate Twisting Approach for the Statistic of the Sum of Subexponential Variates (Extended Version)

    Full text link
    In this letter, we present an improved hazard rate twisting technique for the estimation of the probability that a sum of independent but not necessarily identically distributed subexponential Random Variables (RVs) exceeds a given threshold. Instead of twisting all the components in the summation, we propose to twist only the RVs which have the biggest impact on the right-tail of the sum distribution and keep the other RVs unchanged. A minmax approach is performed to determine the optimal twisting parameter which leads to an asymptotic optimality criterion. Moreover, we show through some selected simulation results that our proposed approach results in a variance reduction compared to the technique where all the components are twisted
    corecore