731 research outputs found

    [Research activities in applied mathematics, fluid mechanics, and computer science]

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995

    Research in progress in applied mathematics, numerical analysis, fluid mechanics, and computer science

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science

    Summary of research in progress at ICASE

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1992 through March 31, 1993

    Semiannual final report, 1 October 1991 - 31 March 1992

    Get PDF
    A summary of research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period 1 Oct. 1991 through 31 Mar. 1992 is presented

    Parallel algorithms for direct blood flow simulations

    Get PDF
    Fluid mechanics of blood can be well approximated by a mixture model of a Newtonian fluid and deformable particles representing the red blood cells. Experimental and theoretical evidence suggests that the deformation and rheology of red blood cells is similar to that of phospholipid vesicles. Vesicles and red blood cells are both area preserving closed membranes that resist bending. Beyond red blood cells, vesicles can be used to investigate the behavior of cell membranes, intracellular organelles, and viral particles. Given the importance of vesicle flows, in this thesis we focus in efficient numerical methods for such problems: we present computationally scalable algorithms for the simulation of dilute suspension of deformable vesicles in two and three dimensions. Our method is based on the boundary integral formulation of Stokes flow. We present new schemes for simulating the three-dimensional hydrodynamic interactions of large number of vesicles with viscosity contrast. The algorithms incorporate a stable time-stepping scheme, high-order spatiotemporal discretizations, spectral preconditioners, and a reparametrization scheme capable of resolving extreme mesh distortions in dynamic simulations. The associated linear systems are solved in optimal time using spectral preconditioners. The highlights of our numerical scheme are that (i) the physics of vesicles is faithfully represented by using nonlinear solid mechanics to capture the deformations of each cell, (ii) the long-range, N-body, hydrodynamic interactions between vesicles are accurately resolved using the fast multipole method (FMM), and (iii) our time stepping scheme is unconditionally stable for the flow of single and multiple vesicles with viscosity contrast and its computational cost-per-simulation-unit-time is comparable to or less than that of an explicit scheme. We report scaling of our algorithms to simulations with millions of vesicles on thousands of computational cores.PhDCommittee Chair: Biros, George; Committee Member: Alben, Silas; Committee Member: Fernandez-Nieves, Alberto; Committee Member: Hu, David; Committee Member: Vuduc, Richar

    Semiannual report

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period 1 Oct. 1994 - 31 Mar. 1995

    ICASE

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in the areas of (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving Langley facilities and scientists; and (4) computer science

    [Activity of Institute for Computer Applications in Science and Engineering]

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science
    corecore