20,318 research outputs found

    Reliability of Erasure Coded Storage Systems: A Geometric Approach

    Full text link
    We consider the probability of data loss, or equivalently, the reliability function for an erasure coded distributed data storage system under worst case conditions. Data loss in an erasure coded system depends on probability distributions for the disk repair duration and the disk failure duration. In previous works, the data loss probability of such systems has been studied under the assumption of exponentially distributed disk failure and disk repair durations, using well-known analytic methods from the theory of Markov processes. These methods lead to an estimate of the integral of the reliability function. Here, we address the problem of directly calculating the data loss probability for general repair and failure duration distributions. A closed limiting form is developed for the probability of data loss and it is shown that the probability of the event that a repair duration exceeds a failure duration is sufficient for characterizing the data loss probability. For the case of constant repair duration, we develop an expression for the conditional data loss probability given the number of failures experienced by a each node in a given time window. We do so by developing a geometric approach that relies on the computation of volumes of a family of polytopes that are related to the code. An exact calculation is provided and an upper bound on the data loss probability is obtained by posing the problem as a set avoidance problem. Theoretical calculations are compared to simulation results.Comment: 28 pages. 8 figures. Presented in part at IEEE International Conference on BigData 2013, Santa Clara, CA, Oct. 2013 and to be presented in part at 2014 IEEE Information Theory Workshop, Tasmania, Australia, Nov. 2014. New analysis added May 2015. Further Update Aug. 201

    Fractional repetition codes with flexible repair from combinatorial designs

    Get PDF
    Fractional repetition (FR) codes are a class of regenerating codes for distributed storage systems with an exact (table-based) repair process that is also uncoded, i.e., upon failure, a node is regenerated by simply downloading packets from the surviving nodes. In our work, we present constructions of FR codes based on Steiner systems and resolvable combinatorial designs such as affine geometries, Hadamard designs and mutually orthogonal Latin squares. The failure resilience of our codes can be varied in a simple manner. We construct codes with normalized repair bandwidth (β\beta) strictly larger than one; these cannot be obtained trivially from codes with β=1\beta = 1. Furthermore, we present the Kronecker product technique for generating new codes from existing ones and elaborate on their properties. FR codes with locality are those where the repair degree is smaller than the number of nodes contacted for reconstructing the stored file. For these codes we establish a tradeoff between the local repair property and failure resilience and construct codes that meet this tradeoff. Much of prior work only provided lower bounds on the FR code rate. In our work, for most of our constructions we determine the code rate for certain parameter ranges.Comment: 27 pages in IEEE two-column format. IEEE Transactions on Information Theory (to appear
    • …
    corecore