3 research outputs found

    Fixed-Parameter Tractability of Maximum Colored Path and Beyond

    Full text link
    We introduce a general method for obtaining fixed-parameter algorithms for problems about finding paths in undirected graphs, where the length of the path could be unbounded in the parameter. The first application of our method is as follows. We give a randomized algorithm, that given a colored nn-vertex undirected graph, vertices ss and tt, and an integer kk, finds an (s,t)(s,t)-path containing at least kk different colors in time 2knO(1)2^k n^{O(1)}. This is the first FPT algorithm for this problem, and it generalizes the algorithm of Bj\"orklund, Husfeldt, and Taslaman [SODA 2012] on finding a path through kk specified vertices. It also implies the first 2knO(1)2^k n^{O(1)} time algorithm for finding an (s,t)(s,t)-path of length at least kk. Our method yields FPT algorithms for even more general problems. For example, we consider the problem where the input consists of an nn-vertex undirected graph GG, a matroid MM whose elements correspond to the vertices of GG and which is represented over a finite field of order qq, a positive integer weight function on the vertices of GG, two sets of vertices S,TV(G)S,T \subseteq V(G), and integers p,k,wp,k,w, and the task is to find pp vertex-disjoint paths from SS to TT so that the union of the vertices of these paths contains an independent set of MM of cardinality kk and weight ww, while minimizing the sum of the lengths of the paths. We give a 2p+O(k2log(q+k))nO(1)w2^{p+O(k^2 \log (q+k))} n^{O(1)} w time randomized algorithm for this problem.Comment: 50 pages, 16 figure

    A Fast Parallel Algorithm for Minimum-Cost Small Integral Flows

    No full text
    We present a new approach to the minimum-cost integral flow problem for small values of the flow. It reduces the problem to the tests of simple multivariate polynomials over a finite field of characteristic two for non-identity with zero. In effect, we show that a minimum-cost flow of value k in a network with n vertices, a sink and a source, integral edge capacities and positive integral edge costs polynomially bounded in n can be found by a randomized PRAM, with errors of exponentially small probability in n, running in O(klog(kn)+log(2)(kn)) time and using 2 (k) (kn) (O(1)) processors. Thus, in particular, for the minimum-cost flow of value O(logn), we obtain an RNC2 algorithm, improving upon time complexity of earlier NC and RNC algorithms

    A Fast Parallel Algorithm for Minimum-Cost Small Integral Flows

    No full text
    We present a new approach to the minimum-cost integral flow problem for small values of the flow. It reduces the problem to the tests of simple multi-variable polynomials over a finite field of characteristic two for non-identity with zero. In effect, we show that a minimum-cost flow of value k in a network with n vertices, a sink and a source, integral edge capacities and positive integral edge costs polynomially bounded in n can be found by a randomized PRAM, with errors of exponentially small probability in n, running in O(klog(kn) + log2 (kn)) time and using 2 k (kn) O(1) processors. Thus, in particular, for the minimum-cost flow of value O(logn), we obtain an RNC 2 algorithm
    corecore