48 research outputs found

    Bounding the size of a vertex-stabiliser in a finite vertex-transitive graph

    Get PDF
    In this paper we discuss a method for bounding the size of the stabiliser of a vertex in a GG-vertex-transitive graph Γ\Gamma. In the main result the group GG is quasiprimitive or biquasiprimitive on the vertices of Γ\Gamma, and we obtain a genuine reduction to the case where GG is a nonabelian simple group. Using normal quotient techniques developed by the first author, the main theorem applies to general GG-vertex-transitive graphs which are GG-locally primitive (respectively, GG-locally quasiprimitive), that is, the stabiliser GαG_\alpha of a vertex α\alpha acts primitively (respectively quasiprimitively) on the set of vertices adjacent to α\alpha. We discuss how our results may be used to investigate conjectures by Richard Weiss (in 1978) and the first author (in 1998) that the order of GαG_\alpha is bounded above by some function depending only on the valency of Γ\Gamma, when Γ\Gamma is GG-locally primitive or GG-locally quasiprimitive, respectively

    Locally ss-distance transitive graphs

    Full text link
    We give a unified approach to analysing, for each positive integer ss, a class of finite connected graphs that contains all the distance transitive graphs as well as the locally ss-arc transitive graphs of diameter at least ss. A graph is in the class if it is connected and if, for each vertex vv, the subgroup of automorphisms fixing vv acts transitively on the set of vertices at distance ii from vv, for each ii from 1 to ss. We prove that this class is closed under forming normal quotients. Several graphs in the class are designated as degenerate, and a nondegenerate graph in the class is called basic if all its nontrivial normal quotients are degenerate. We prove that, for s≥2s\geq 2, a nondegenerate, nonbasic graph in the class is either a complete multipartite graph, or a normal cover of a basic graph. We prove further that, apart from the complete bipartite graphs, each basic graph admits a faithful quasiprimitive action on each of its (1 or 2) vertex orbits, or a biquasiprimitive action. These results invite detailed additional analysis of the basic graphs using the theory of quasiprimitive permutation groups.Comment: Revised after referee report

    Finite 33-connected homogeneous graphs

    Full text link
    A finite graph \G is said to be {\em (G,3)(G,3)-((connected)) homogeneous} if every isomorphism between any two isomorphic (connected) subgraphs of order at most 33 extends to an automorphism g∈Gg\in G of the graph, where GG is a group of automorphisms of the graph. In 1985, Cameron and Macpherson determined all finite (G,3)(G, 3)-homogeneous graphs. In this paper, we develop a method for characterising (G,3)(G,3)-connected homogeneous graphs. It is shown that for a finite (G,3)(G,3)-connected homogeneous graph \G=(V, E), either G_v^{\G(v)} is 22--transitive or G_v^{\G(v)} is of rank 33 and \G has girth 33, and that the class of finite (G,3)(G,3)-connected homogeneous graphs is closed under taking normal quotients. This leads us to study graphs where GG is quasiprimitive on VV. We determine the possible quasiprimitive types for GG in this case and give new constructions of examples for some possible types

    Two local conditions on the vertex stabiliser of arc-transitive graphs and their effect on the Sylow subgroups

    Full text link
    In this paper we study GG-arc-transitive graphs Δ\Delta where the permutation group GxΔ(x)G_x^{\Delta(x)} induced by the stabiliser GxG_x of the vertex xx on the neighbourhood Δ(x)\Delta(x) satisfies the two conditions given in the introduction. We show that for such a GG-arc-transitive graph Δ\Delta, if (x,y)(x,y) is an arc of Δ\Delta, then the subgroup Gx,y[1]G_{x,y}^{[1]} of GG fixing pointwise Δ(x)\Delta(x) and Δ(y)\Delta(y) is a pp-group for some prime pp. Next we prove that every GG-locally primitive (respectively quasiprimitive, semiprimitive) graph satisfies our two local hypotheses. Thus this provides a new Thompson-Wielandt-like theorem for a very large class of arc-transitive graphs. Furthermore, we give various families of GG-arc-transitive graphs where our two local conditions do not apply and where Gx,y[1]G_{x,y}^{[1]} has arbitrarily large composition factors
    corecore