82 research outputs found

    Ranking and clustering of nodes in networks with smart teleportation

    Get PDF
    Random teleportation is a necessary evil for ranking and clustering directed networks based on random walks. Teleportation enables ergodic solutions, but the solutions must necessarily depend on the exact implementation and parametrization of the teleportation. For example, in the commonly used PageRank algorithm, the teleportation rate must trade off a heavily biased solution with a uniform solution. Here we show that teleportation to links rather than nodes enables a much smoother trade-off and effectively more robust results. We also show that, by not recording the teleportation steps of the random walker, we can further reduce the effect of teleportation with dramatic effects on clustering.Comment: 10 pages, 7 figure

    Eigenvector-Based Centrality Measures for Temporal Networks

    Get PDF
    Numerous centrality measures have been developed to quantify the importances of nodes in time-independent networks, and many of them can be expressed as the leading eigenvector of some matrix. With the increasing availability of network data that changes in time, it is important to extend such eigenvector-based centrality measures to time-dependent networks. In this paper, we introduce a principled generalization of network centrality measures that is valid for any eigenvector-based centrality. We consider a temporal network with N nodes as a sequence of T layers that describe the network during different time windows, and we couple centrality matrices for the layers into a supra-centrality matrix of size NTxNT whose dominant eigenvector gives the centrality of each node i at each time t. We refer to this eigenvector and its components as a joint centrality, as it reflects the importances of both the node i and the time layer t. We also introduce the concepts of marginal and conditional centralities, which facilitate the study of centrality trajectories over time. We find that the strength of coupling between layers is important for determining multiscale properties of centrality, such as localization phenomena and the time scale of centrality changes. In the strong-coupling regime, we derive expressions for time-averaged centralities, which are given by the zeroth-order terms of a singular perturbation expansion. We also study first-order terms to obtain first-order-mover scores, which concisely describe the magnitude of nodes' centrality changes over time. As examples, we apply our method to three empirical temporal networks: the United States Ph.D. exchange in mathematics, costarring relationships among top-billed actors during the Golden Age of Hollywood, and citations of decisions from the United States Supreme Court.Comment: 38 pages, 7 figures, and 5 table

    Dynamics-based centrality for general directed networks

    Full text link
    Determining the relative importance of nodes in directed networks is important in, for example, ranking websites, publications, and sports teams, and for understanding signal flows in systems biology. A prevailing centrality measure in this respect is the PageRank. In this work, we focus on another class of centrality derived from the Laplacian of the network. We extend the Laplacian-based centrality, which has mainly been applied to strongly connected networks, to the case of general directed networks such that we can quantitatively compare arbitrary nodes. Toward this end, we adopt the idea used in the PageRank to introduce global connectivity between all the pairs of nodes with a certain strength. Numerical simulations are carried out on some networks. We also offer interpretations of the Laplacian-based centrality for general directed networks in terms of various dynamical and structural properties of networks. Importantly, the Laplacian-based centrality defined as the stationary density of the continuous-time random walk with random jumps is shown to be equivalent to the absorption probability of the random walk with sinks at each node but without random jumps. Similarly, the proposed centrality represents the importance of nodes in dynamics on the original network supplied with sinks but not with random jumps.Comment: 7 figure

    Generalized Markov stability of network communities

    Full text link
    We address the problem of community detection in networks by introducing a general definition of Markov stability, based on the difference between the probability fluxes of a Markov chain on the network at different time scales. The specific implementation of the quality function and the resulting optimal community structure thus become dependent both on the type of Markov process and on the specific Markov times considered. For instance, if we use a natural Markov chain dynamics and discount its stationary distribution -- that is, we take as reference process the dynamics at infinite time -- we obtain the standard formulation of the Markov stability. Notably, the possibility to use finite-time transition probabilities to define the reference process naturally allows detecting communities at different resolutions, without the need to consider a continuous-time Markov chain in the small time limit. The main advantage of our general formulation of Markov stability based on dynamical flows is that we work with lumped Markov chains on network partitions, having the same stationary distribution of the original process. In this way the form of the quality function becomes invariant under partitioning, leading to a self-consistent definition of community structures at different aggregation scales
    • …
    corecore