23,721 research outputs found

    Supporting service discovery, querying and interaction in ubiquitous computing environments.

    Get PDF
    In this paper, we contend that ubiquitous computing environments will be highly heterogeneous, service rich domains. Moreover, future applications will consequently be required to interact with multiple, specialised service location and interaction protocols simultaneously. We argue that existing service discovery techniques do not provide sufficient support to address the challenges of building applications targeted to these emerging environments. This paper makes a number of contributions. Firstly, using a set of short ubiquitous computing scenarios we identify several key limitations of existing service discovery approaches that reduce their ability to support ubiquitous computing applications. Secondly, we present a detailed analysis of requirements for providing effective support in this domain. Thirdly, we provide the design of a simple extensible meta-service discovery architecture that uses database techniques to unify service discovery protocols and addresses several of our key requirements. Lastly, we examine the lessons learnt through the development of a prototype implementation of our architecture

    Accessible user interface support for multi-device ubiquitous applications: architectural modifiability considerations

    Get PDF
    The market for personal computing devices is rapidly expanding from PC, to mobile, home entertainment systems, and even the automotive industry. When developing software targeting such ubiquitous devices, the balance between development costs and market coverage has turned out to be a challenging issue. With the rise of Web technology and the Internet of things, ubiquitous applications have become a reality. Nonetheless, the diversity of presentation and interaction modalities still drastically limit the number of targetable devices and the accessibility toward end users. This paper presents webinos, a multi-device application middleware platform founded on the Future Internet infrastructure. Hereto, the platform's architectural modifiability considerations are described and evaluated as a generic enabler for supporting applications, which are executed in ubiquitous computing environments

    Context-aware and automatic configuration of mobile devices in cloud-enabled ubiquitous computing

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s00779-013-0698-3. Copyright @ Springer-Verlag London 2013.Context-sensitive (or aware) applications have, in recent years, moved from the realm of possibilities to that of ubiquity. One exciting research area that is still very much in the realm of possibilities is that of cloud computing, and in this paper, we present our work, which explores the overlap of these two research areas. Accordingly, this paper explores the notion of cross-source integration of cloud-based, context-aware information in ubiquitous computing through a developed prototypical solution. Moreover, the described solution incorporates remote and automatic configuration of Android smartphones and advances the research area of context-aware information by harvesting information from several sources to build a rich foundation on which algorithms for context-aware computation can be based. Evaluation results show the viability of integrating and tailoring contextual information to provide users with timely, relevant and adapted application behaviour and content

    Mobile support in CSCW applications and groupware development frameworks

    No full text
    Computer Supported Cooperative Work (CSCW) is an established subset of the field of Human Computer Interaction that deals with the how people use computing technology to enhance group interaction and collaboration. Mobile CSCW has emerged as a result of the progression from personal desktop computing to the mobile device platforms that are ubiquitous today. CSCW aims to not only connect people and facilitate communication through using computers; it aims to provide conceptual models coupled with technology to manage, mediate, and assist collaborative processes. Mobile CSCW research looks to fulfil these aims through the adoption of mobile technology and consideration for the mobile user. Facilitating collaboration using mobile devices brings new challenges. Some of these challenges are inherent to the nature of the device hardware, while others focus on the understanding of how to engineer software to maximize effectiveness for the end-users. This paper reviews seminal and state-of-the-art cooperative software applications and development frameworks, and their support for mobile devices

    On the cloud deployment of a session abstraction for service/data aggregation

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia InformáticaThe global cyber-infrastructure comprehends a growing number of resources, spanning over several abstraction layers. These resources, which can include wireless sensor devices or mobile networks, share common requirements such as richer inter-connection capabilities and increasing data consumption demands. Additionally, the service model is now widely spread, supporting the development and execution of distributed applications. In this context, new challenges are emerging around the “big data” topic. These challenges include service access optimizations, such as data-access context sharing, more efficient data filtering/ aggregation mechanisms, and adaptable service access models that can respond to context changes. The service access characteristics can be aggregated to capture specific interaction models. Moreover, ubiquitous service access is a growing requirement, particularly regarding mobile clients such as tablets and smartphones. The Session concept aggregates the service access characteristics, creating specific interaction models, which can then be re-used in similar contexts. Existing Session abstraction implementations also allow dynamic reconfigurations of these interaction models, so that the model can adapt to context changes, based on service, client or underlying communication medium variables. Cloud computing on the other hand, provides ubiquitous access, along with large data persistence and processing services. This thesis proposes a Session abstraction implementation, deployed on a Cloud platform, in the form of a middleware. This middleware captures rich/dynamic interaction models between users with similar interests, and provides a generic mechanism for interacting with datasources based on multiple protocols. Such an abstraction contextualizes service/users interactions, can be reused by other users in similar contexts. This Session implementation also permits data persistence by saving all data in transit in a Cloud-based repository, The aforementioned middleware delivers richer datasource-access interaction models, dynamic reconfigurations, and allows the integration of heterogenous datasources. The solution also provides ubiquitous access, allowing client connections from standard Web browsers or Android based mobile devices

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Implementing a map based simulator for the location API for J2ME

    Get PDF
    The Java Location API for J2METM integrates generic positioning and orientation data with persistent storage of landmark objects. It can be used to develop location based service applications for small mobile devices, and these applications can be tested using simulation environments. Currently the only simulation tools in the public domain are proprietary mobile device simulators that are driven by GPS data log files, but it is sometimes useful to be able to test location based services using interactive map-based tools. In addition, we may need to experiment with extensions and changes to the standard API to support additional services, requiring an open source environment. In this paper we describe the implementation of an open source map-based simulation tool compatible with other commonly used development and deployment tools
    • …
    corecore