12 research outputs found

    Joint Range and Doppler Adaptive Processing for CBM based DFRC systems

    Full text link
    Recently, dual-function radar communication (DFRC) systems have been proposed to integrate radar and communication into one platform for spectrum sharing. Various signalling strategies have been proposed to embed communication information into the radar transmitted waveforms. Among these, complex beampattern modulation (CBM) embeds communication information into the complex transmit beampattens via changing the amplitude and phase of the beampatterns towards the communication receiver. The embedding of random communication information causes the clutter modulation and high range-Doppler sidelobe. What's more, transmitting different waveforms on a pulse to pulse basis degrades the radar target detection capacity when traditional sequential pulse compression (SPC) and moving-target detection (MTD) is utilized. In this paper, a minimum mean square error (MMSE) based filter, denoted as joint range and Doppler adaptive processing (JRDAP) is proposed. The proposed method estimates the targets' impulse response coefficients at each range-Doppler cell adaptively to suppress high range-Doppler sidelobe and clutter modulation. The performance of proposed method is very close to the full-dimension adaptive multiple pulses compression (AMPC) while reducing computational complexity greatly.Comment: 11 pages, 5 figure

    Exploring the Synergy: A Review of Dual-Functional Radar Communication Systems

    Full text link
    This review paper examines the concept and advancements in the evolving landscape of Dual-functional Radar Communication (DFRC) systems. Traditionally, radar and communication systems have functioned independently, but current research is actively investigating the integration of these functionalities into a unified platform. This paper discusses the motivations behind the development of DFRC systems, the challenges involved, and the potential benefits they offer. A discussion on the performance bounds for DFRC systems is also presented. The paper encompasses a comprehensive analysis of various techniques, architectures, and technologies used in the design and optimization of DFRC systems, along with their performance and trade-offs. Additionally, we explore potential application scenarios for these joint communication and sensing systems, offering a comprehensive perspective on the multifaceted landscape of DFRC technology.Comment: 17 pages, 7 figure
    corecore