13 research outputs found

    Defected Ground Structure: Fundamentals, Analysis, and Applications in Modern Wireless Trends

    Get PDF
    Slots or defects integrated on the ground plane of microwave planar circuits are referred to as Defected Ground Structure. DGS is adopted as an emerging technique for improving the various parameters of microwave circuits, that is, narrow bandwidth, cross-polarization, low gain, and so forth. This paper presents an introduction and evolution of DGS and how DGS is different from former technologies: PBG and EBG. A basic concept behind the DGS technology and several theoretical techniques for analysing the Defected Ground Structure are discussed. Several applications of DGS in the field of filters, planar waveguides, amplifiers, and antennas are presented

    Ultra-low power radio transceiver for wireless sensor networks

    Get PDF
    The objective of this thesis is to present the design and implementation of ultra-low power radio transceivers at microwave frequencies, which are applicable to wireless sensor network (WSN) and, in particular, to the requirement of the Speckled Computing Consortium (or SpeckNet). This was achieved through quasi-MMIC prototypes and monolithic microwave integrated circuit (MMIC) with dc power consumption of less than 1mW and radio communication ranges operating at least one metre. A wireless sensor network is made up of widely distributed autonomous devices incorporating sensors to cooperatively monitor physical environments. There are different kinds of sensor network applications in which sensors perform a wide range of activities. Among these, a certain set of applications require that sensor nodes collect information about the physical environment. Each sensor node operates autonomously without a central node of control. However, there are many implementation challenges associated with sensor nodes. These nodes must consume extremely low power and must communicate with their neighbours at bit-rates in the order of hundreds of kilobits per second and potentially need to operate at high volumetric densities. Since the power constraint is the most challenging requirement, the radio transceiver must consume ultra-low power in order to prolong the limited battery capacity of a node. The radio transceiver must also be compact, less than 5×5 mm2, to achieve a target size for sensor node and operate over a range of at least one metre to allow communication between widely deployed nodes. Different transceiver topologies are discussed to choose the radio transceiver architecture with specifications that are required in this project. The conventional heterodyne and homodyne topologies are discussed to be unsuitable methods to achieve low power transceiver due to power hungry circuits and their high complexity. The super-regenerative transceiver is also discussed to be unsuitable method because it has a drawback of inherent frequency instability and its characteristics strongly depend on the performance of the super-regenerative oscillator. Instead, a more efficient method of modulation and demodulation such as on-off keying (OOK) is presented. Furthermore, design considerations are shown which can be used to achieve relatively large output voltages for small input powers using an OOK modulation system. This is important because transceiver does not require the use of additional circuits to increase gain or sensitivity and consequently it achieves lower power consumption in a sensor node. This thesis details the circuit design with both a commercial and in-house device technology with ultra-low dc power consumption while retaining adequate RF performance. It details the design of radio building blocks including amplifiers, oscillators, switches and detectors. Furthermore, the circuit integration is presented to achieve a compact transceiver and different circuit topologies to minimize dc power consumption are described. To achieve the sensitivity requirements of receiver, a detector design method with large output voltage is presented. The receiver is measured to have output voltages of 1mVp-p for input powers of -60dBm over a 1 metre operating range while consuming as much as 420μW. The first prototype combines all required blocks using an in-house GaAs MMIC process with commercial pseudomorphic high electron mobility transistor (PHEMT). The OOK radio transceiver successfully operates at the centre frequency of 10GHz for compact antenna and with ultra-low power consumption and shows an output power of -10.4dBm for the transmitter, an output voltage of 1mVp-p at an operating range of 1 metre for the receiver and a total power consumption of 840μW. Based on this prototype, an MMIC radio transceiver at the 24GHz band is also designed to further improve the performance and reduce the physical size with an advanced 50nm gate-length GaAs metamorphic high electron mobility transistor (MHEMT) device technology

    UWB Technology

    Get PDF
    Ultra Wide Band (UWB) technology has attracted increasing interest and there is a growing demand for UWB for several applications and scenarios. The unlicensed use of the UWB spectrum has been regulated by the Federal Communications Commission (FCC) since the early 2000s. The main concern in designing UWB circuits is to consider the assigned bandwidth and the low power permitted for transmission. This makes UWB circuit design a challenging mission in today's community. Various circuit designs and system implementations are published in this book to give the reader a glimpse of the state-of-the-art examples in this field. The book starts at the circuit level design of major UWB elements such as filters, antennas, and amplifiers; and ends with the complete system implementation using such modules

    Design and analysis of miniaturized substrate integrated waveguide reconfigurable filters for mm-wave applications.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Microwave filters are an integral part of communication systems. With the advent of new technologies, microwave devices, such as filters, need to have superior performance in terms of power handling, selectivity, size, insertion loss etc. During the past decade, many applications have been added to the communication networks, resulting in communication systems having to operate at high frequencies in the region of THz to achieve the stringent bandwidth requirements. To achieve the requirements of the modern communication system, tunability and reconfigurability have become fundamental requirements to reduce the footprint of communication devices. However, the communication systems that are more prevalent such as planar circuits have either a large footprint or are not able to handle large amounts of power due to radiation leakage. In this thesis, Substrate Integrated Waveguide (SIW) technology has been employed. The SIW has the same properties as the conventional rectangular waveguide; hence it benefits from the high quality (Q) factor and can handle large powers with small radiation loss. The Half-mode (HMSIW), Quarter-mode (QMSIW), and Eighth-mode (EMSIW) cavity resonators have been designed and used for the miniaturization of the microwave filters. The coupling matrix method was used to implement a filter that uses cross-coupled EMSIW and HMSIW cavity resonators to improve the selectivity of the filter. Balanced circuit techniques have been used to design the circuits that preserve communication systems integrity whereby the Common Mode (CM) signal was suppressed using Deformed Ground Structure (DGS) and a center conductor patch with meandered line. For the designed dual-band filter, the common mode signal was suppressed to -90 dB and - 40 dB for the first and second passband, respectively. The insertion loss observed is 2.8 dB and 1.6 dB for the first and second passband, respectively. For tunability of the filter, a dual-band filter utilizing triangular HMSIW resonators has been designed and reconfigurability is achieved by perturbing the substrate permittivity by dielectric rods. The dielectric rods’ permittivity was changed to achieve tunability in the first instance, and then the rods’ diameter changed in the second instance. For the lowerband, frequency is tunable from 8.1 GHz to 9.15 GHz, while the upper band is tuned from 14.61 GHz to 16.10 GHz. A second order SIW filter with a two layer substrate was then designed to operate in the THz region. For reconfigurability, Graphene was sandwiched between the Silicon Di-Oxide substrate and the top gold plate of the filter, and the chemical potential of Graphene was then varied by applying a dc bias voltage. With a change in dc voltage the chemical potential of Graphene changes accordingly. From the results, a chemical potential change of 0.1 eV to 0.6 eV brings about a frequency change from 1.289 THz to 1.297 THz

    Self-packaged miniature microwave filters based on multilayer liquid crystal polymer technology

    Get PDF
    The following thesis is concerned with the development of fabrication techniques and novel designs for self-packaged, multilayer circuits using liquid crystal polymer (LCP) materials exclusively, given the favourable characteristics this material has for microwave circuits. Fabrication techniques are aimed at the production of miniature, low-profile filters. Advanced techniques for production of interlayer via connections are investigated and new methods proposed, with special attention at the lamination process and production of vertical, inter-layer transitions. Results obtained demonstrate the fabrication process is reliable for producing multilayer filters, with up to four metal layers, and via transitions in the region of 0.2 mm diameter. The fabrication process has been developed during this work is applied to novel filter designs, covering dual-band filters and lowpass filters. A new structure for dual- band filter is proposed, using folded multimode resonators (FMSIR). This structure is validated through the fabrication of two different filters with passbands 1.2/2.4 GHz, and 2.4/5 GHz, showing deep off-band rejection. Low pass structure covered in this thesis is based on the principle of destructive interference and aims at low insertion loss and out-of-band rejection higher than 40 dB. Fabricated samples validate the design showing a rejection in the region of 42 dB, with a cuto frequency of 3 GHz. Its small footprint and low insertion loss allows this type of lters to be used as cleanup filters. All the designs covered in this work are simulated using CAD tools and then validated by measurements on fabricated samples

    Design and analysis of wideband passive microwave devices using planar structures

    Get PDF
    A selected volume of work consisting of 84 published journal papers is presented to demonstrate the contributions made by the author in the last seven years of his work at the University of Queensland in the area of Microwave Engineering. The over-arching theme in the author’s works included in this volume is the engineering of novel passive microwave devices that are key components in the building of any microwave system. The author’s contribution covers innovative designs, design methods and analyses for the following key devices and associated systems: Wideband antennas and associated systems Band-notched and multiband antennas Directional couplers and associated systems Power dividers and associated systems Microwave filters Phase shifters Much of the motivation for the work arose from the desire to contribute to the engineering o

    Realistic frequency coded chipless RFID: physically modulated tags and refectarray readers

    Get PDF
    In letzter Zeit hat die chiplose RFID Technologie enorme Aufmerksamkeit im besonders kostenbewussten Markt für Objektidentifikation erregt. Allerdings befindet sich der aktuelle Stand der Technik auf einem konzeptionellen Niveau und leidet noch unter einer Menge Einschränkungen, die eine sofortige Verwendung der Technologie noch verhindern. Grundsätzlich lässt sich ein chiploses RFID System in drei Teile unterteilen, dem RFID Lesegerät, den verwendeten Antennen und dem RFID Tag. Der Beitrag der vorliegenden Dissertation zur Überwindung der erwähnten Einschränkungen liegt in innovativen physikalisch modulierenden RFID Tags und in der Weiterentwicklung des Antennensystems des RFID Lesegerätes. Dabei werden besonders die drei im Folgenden beschriebenen Aspekte betrachtet. Der erste Aspekt beschäftigt sich mit physikalisch linear modulierten RFID Tags. Dabei werden die RFID Tags mit einem Ultra Breitband (engl. ultra wideband, UWB) Signal bestrahlt und die auf dem RFID Tag aufgebrachten Resonatoren modulieren die Frequenz des Signals physikalisch. Dabei werden dem UWB Signal resonante Notches und/oder Peaks aufmoduliert, die sich in der Frequenzantwort des von der effektiven Rückstrahlfläche (engl. radar cross section, RCS) zurückgestrahlten Signals befindet. Hierfür sind vier innovative physikalisch modulierende RFID Tags, mit dem Ziel einer effektiveren Kodierung und maximalen Kodierungstiefe bei gleichbleibender Frequenzauslastung und RFID Tag Größe, entwickelt worden. Der erste RFID Tag besteht aus ineinander verschachtelten Ringresonatoren, wobei jeder Resonator ein Notch, also ein Bit, erzeugt. Der zweite RFID Tag arbeitet auf zwei unterschiedlichen Polarisationsebenen für empfangene und rückgestrahlte Signale. Dadurch kann die Streustrahlung der Umgebung leichter herausgefiltert werden. Beide Strukturen sind skalierbar, druckbar und kompakt. Als drittes wird ein neuartiger Notchbreiten modulierender (engl. notch width modulation, NWM) RFID Tag eingeführt. Dabei ist die ID des RFID Tags nicht nur über die Notchlage im Frequenzbereich sondern auch über die Notchbreite definiert. Die Notchbreite stellt also eine zusätzliche Dimension bereit, die die Freiheitsgrade (engl. degree of Freedom, DoF) für Kodierung und Modulation erhöhen, was wiederum die kodier Effektivität und Codetiefe verbessert. Als letztes wird ein neuartiger On Off-Notch/Peak (OONP) und Notch/Peak-Position (N/P-P) modulierender RFID Tag eingeführt. Die Idee dahinter ist, sowohl das kopolarisierte als auch das kreuzpolarisierte Rückstrahl Signal eines mit einer linear-polarisierten Welle angeregten RFID Tags auszunutzen. Dies bittet ein weiteres Kriterium um sowohl kodier Effektivität als auch Codetiefe des chiplosen RFID Systems weiter zu verbessern. Gleichzeitig verbessert die kreuzpolarisierte Antwort auch wieder die Detektion des RFID Tags in einer realen Umgebung. Alle vorgeschlagenen RFID Tags und Modulationsschemata sind mit elektromagnetischen (EM) Simulationen und in einer realen Testumgebung überprüft worden. Der zweite Aspekt dieser Arbeit schlägt Reflect-Array Antennen (RA) für das RFID Lesegerät mit dem Ziel vor, die Lesereichweite zu erhöhen und die Reflektionen an der Umgebung zu minimieren. Das RA bietet dabei im Vergleich zu herkömmlichen Phased-Array-Antennen eine Menge weiterer Eigenschaften. Das RA ist einfach zu integrieren, von geringem Gewicht, hat eine sehr geometrische Anordnung und ist preiswert, um nur einige zu nennen. Insgesamt wurden drei neuartige RA Aufbauten entwickelt. Als erstes wurde eine logarithmisch periodische Antenne (engl. log periodic antenna array, LPDA) als Primärstrahler für die entworfene RA Oberfläche genutzt. Der Prototype arbeitet bei 5.8GHz und erreicht eine Bandbreite von 300MHz. Außerdem ist der erzeugte Antennenstrahl viermal schmaler als der Primärstrahl und erreicht somit einen um 6dB höheren Antennengewinn bei einem Nebenkeulenpegel (engl. side lobe level, SSL) von −10dB. Für den zweiten Prototypen wird ein selbstentwickelter Hornstrahler mit konstanter Phase als Primärstrahler für die RA Oberfläche verwendet. Durch diese Anordnung wird ein UWB RA realisiert, mit dem mehrere Bits gleichzeitig ausgelesen werden können. Die Antenne arbeitet zwischen 4 − 6GHz und erreicht einen Öffnungswinkel (engl. half power beam width, HPBW) von 15° bei 19dBi Antennengewinn und −10dB SLL. Im Zusammenspiel mit den physikalisch modulierenden RFID Tags konnte mit diesem UWB RA eine Lesereichweite von 1m erzielt werden, was nach meinem Kenntnisstand die größte bisher für ein chiploses frequenzkodiertes (engl. frequency coded, FC) RFID System erreichte Lesereichweite in einer realen Innenraum Umgebung darstellt. Weiter wird eine dual polarisierte RA Antenne mit geringem Kreuzpolarisations Pegel vorgestellt. Es wird vorgeschlagen diese Antenne mit den ko-/kreuzpolarisierten RFID Tags zu verwenden. Als letztes wird eine RA Antenne mit elektronischer Strahlsteuerung eingeführt, die die Stabilität des Lesevorgangs weiter erhöht und eine präzise Ortung der chiplosen RFID Tags ermöglicht. Dazu wird eine Zelle vorgeschlagen, die mit Hilfe einer Varaktordiode in der Lage ist, für einzelne Frequenzen die Phase des reflektierten Signals elektronisch zu steuern. Ein Scanbereich von ±50° kann damit abgedeckt werden. Als dritter Aspekt werden nicht-lineare physikalisch modulierende RFID Tags vorgeschlagen. Hier ist der Kerngedanke, dass der RFID Tag seine ID mit einer anderen Frequenz zurückstrahlt als die mit der er selber angestrahlt wird. Durch dieses nichtlineare Verhalten wird die Umgebungsstrahlung komplett ausgeblendet, die sonst unumgänglichen Kalibrierungsmessungen werden überflüssig, das Problem der Verstimmung durch das RFID Tag Material wird umgangen und die Abdeckung wird erhöht. Die Nicht-Linearität wird durch eine einzige in die Struktur des RFID Tags integrierte Diode erzeugt. Zunächst werden RFID Tags vorgeschlagen, die mit Nichtlinearitäten zweiter Ordnung arbeiten. Für diese Kategorie werden drei unterschiedliche RFID Tags entworfen. Als Erstes ein Einzelton harmonischer RFID Radar Tag. In dieser Klasse strahlt das RFID Lesegerät einige spezifische Grundtöne aus, die schmalbandige Empfangsan-tenne des RFID Tags ist auf einen Grundton abgestimmt, den sie an die Diode weiterleitet. Die hier generierte zweite Harmonische wird von der entsprechend konfigurierten Sendeantenne der RFID Tags zurückgestrahlt. Dabei gilt, je schmaler der Bandbassfilter, desto mehr Frequenzen können zur Kodierung genutzt werden. Um die Codekapazität zu erhöhen werden als nächsten Mehrfrequenzabfragen vorgestellt. Dazu werden am RFID Lesegerät nacheinander, um keine Mischprodukte entstehen zu lassen, vordefinierte Frequenzen durchlaufen. Auf dem RFID Tag können jetzt mehrere ID Bits wieder durch die unterschiedlichen Frequenzen der jeweiligen zweiten Harmonischen erzeugt werden (engl. Notch Position Modulation, NPM). Anschließend werden festdefinierte Frequenzpaare zum Auslesen der ID verwendet. Die Diode mischt beide Frequenzen und antwortet nur auf der Mischfrequenz eines der Frequenzpaare. In einer weiteren Kategorie werden die Intermodulationseigenschaften der dritten Ordnung ausgenutzt, mit dem Vorteil, dass nur ein relativ geringer Frequenzbereich benötigt wird. Hierbei wir der RFID Tag mit zwei benachbarten Frequenzen bestrahlt und die zurückgestrahlte Intermodulationsfrequenz stellt die ID des RFID Tags dar. Schließlich wird die Kodierung über die Phaseninformation vorgestellt. Zusätzlich zur Existenz oder Fehlen eines Peaks oder Notches wird der dazuge- hörige relative Phasenzustand zur Kodierung herangezogen. Alle vorgestellten RFID Tags und ihre Modulation werden an Hand von Harmonische-Balance-Analyse, EM Simulationen und Messungen in einer realen Testumgebung überprüft. Zum Schluss lässt sich sagen, die einzigartigen Eigenschaften, die in der vorliegenden Dissertation betrachtet werden, bringen wesentliche Verbesserungen für den Einsatz von chiplosen RFID Systemen.Recently, the chipless Radio Frequency Identification (RFID) technology has attracted tremendous attention in the market of item identification where the cost is the main concern. However, up to date the technology is at the conceptual level and suffers from a lot of imitations that hinder the technology deployment. The chipless RFID system comprises three major parts which are the reader circuit, the interrogation antennas, and the chipless tags. The contributions of this dissertation are to overcome the challenges that impede the deployment of the chipless RFID system from the perspective of innovating physically modulated tags and developing the reader antenna system. In particular, the system is considered in three novel aspects. The first aspect is the linear physically modulated tags where the tag is interrogated by Ultra Wideband (UWB) signal and the tag inscribed metallic resonators are physically modulating the interrogation frequencies. Therefore, the UWB waveform is modulated in the form of resonant notches, and/or peaks that are inherently embedded in the tag backscattered Radar Cross Section (RCS) frequency response. In this regard, four innovative physically modulated tags are developed aiming at enhancing the coding efficiency, maximizing the coding capacity, conserving the operating frequency range and preserving the tag size. The first tag is based on nested circular ring resonators where each resonator codifies a tag coding notch. Terefore, the tag structure is scalable, printable and compact size. Moreover, a novel encoding methodology is employed to preserve the notch width and position while coding. The second developed tag is a depolarizing one where the polarization isolation between the reader interrogation signal and the tag response is utilized to minimize the environmental clutter reflections. Furthermore, the tag is scalable, printable, and compact size in the credit card format. Thirdly, a novel Notch Width Modulation (NWM) tag is introduced where the tag-ID is not only based on the notch position but also on the notch width. Hence, the notch width configures a further dimension to increase the Degree of Freedom (DoF) for coding and modulation. Therefore, the notch width and position are modulated simultaneously aiming at enhancing the coding efficiency and capacity. Lastly, a novel On Off Notch/Peak (OO-N/P) and Notch/Peak-Position (N/P-P) modulation tag is introduced. The tag basic idea is to exploit both the co-polarized and cross polarized backscattered signals from a tag excited with a linear polarized wave. Consequently, the tag signature is encoded into Notch/Peak (N/P) format in two orthogonal planes. Thus, the Co/Cross-polarizing N/P modulation scheme presents a novel criterion for enhancing the coding efficiency and capacity of the chipless RFID systems. Moreover, the cross-polarized response enhances the tag detection in a realistic environment. The proposed tags and their associated physical modulation schemes are validated using Electro Magnetic (EM) simulations and real-world testbed measurements. In the second aspect, the Reflectarray (RA) antenna is proposed to be utilized in the reader side aiming at increasing the reading range, minimizing the environmental reflections, and acquiring a lot of novel capabilities that can not be provided by the conventional antenna arrays. The spatial feeding RA antenna is easily integrated with the RF circuits, lightweight, conformal geometry, and low cost. Hence, in this concern, three different novel designs are developed. The first design utilizes the Log Periodic Array (LPDA) antenna to feed the developed RA surface. This introduced prototype operates at 5.8GHz and achieves 300MHz bandwidth. Moreover, the RA antenna radiation beam is 4 times narrower than the feeder beam and thus 6dB higher in gain with −10dB Side Lobe Level (SLL). The second developed prototype uses a constant phase center horn antenna to feed the RA surface. Thus, an UWB RA antenna enabling multiple bits accommodation is designed. This antenna operates from 4GHz to 6GHz with 15° Half Power Beam Width (HPBW), 19dBi gain, and −10dB SLL. Furthermore, this developed UWB RA antenna is successfully integrated with the physically modulated tags and a reading range of 1m is achieved. To the best of my knowledge, this is the highest reading range achieved in the Frequency Coded (FC) chipless RFID systems, considering real-world indoor environment and software defined radio reader. After that, dual-polarized RA antenna with low cross-polarization level is presented. This RA antenna is proposed to be utilized with the Co/Cross-polarizing tags. Finally, a successful implementation of an electronic beam steering RA antenna is introduced. This novel beam steering RA antenna system enhances the reading robustness and can precisely locate the chipless tags. In this concern, a novel unit cell that is able to electronically control the reflected phase at different discrete frequencies utilizing a single varactor diode is proposed. Therefore, a scanning range of ±50° is achieved. Moreover, the steered beams are 4 times narrower than the feeder beam and thus 4 times higher in gain. In the third aspect, the nonlinear physically modulated tags are proposed. The core functionality relies on interrogating the tag with a prescribed set and format of frequencies in a time regulated technique while the tag replies with its unique ID at other frequencies. Therefore, the nonlinearity is exploited to completely isolate the environmental clutter reflections, get rid of the necessary reference calibration measurements, overcome the detuning caused by the tagged item materials, and increase the coverage. These objectives are attained by exploiting the nonlinearity generated from a single unbiased diode integrated with the tag structure. The first proposed tag category relies on exploiting the second order nonlinear terms. Therefore, in this regard, three novel tags are introduced. The first class is the single tone harmonic radar tags. In this class, the reader scans the available tags by sending specific fundamental tones. Then, the tag receiving antenna is tuned at only one of these fundamentals which is maximally conveyed to the nonlinear device for generating the corresponding harmonics. Consequently, the tag transmitting antenna is tuned at the second harmonic which is retransmitted back towards the reader representing the tag-ID. Thus, the narrower is the band-pass filter provided by the tag receiving antenna or integrated into it, the more the frequencies that can be utilized for coding. After that, the multi-tone interrogation is proposed to increase the coding capacity. Hence, the tag is interrogated with a prescribed set of fundamentals that are swept over the time to avoid the generation of the mixing products in the reader and tag as well. The tag in turn which is completely planar based on the Coplanar Waveguide (CPW) technology implements a Notch Position Modulation (NPM) scheme in the second harmonics of these fundamental tones. Therefore, the notches that are existing in the second harmonic response symbolize the tag-ID. Afterward, the simultaneous multi-tone interrogation is explored. In this concern, a set of distinct frequency pairs are used to interrogate the nonlinear tags. As a consequence, these tones are mixed through the nonlinear device. Consequently, the tag transmitting antenna figures out only one of these mixed products. The second proposed tag category relies on exploiting the inter-modulation communication principle which exhibits a small frequency span. Therefore, the tag is illuminated by two co-located frequencies and respond at an inter-modulated frequency which is retransmitted by the tag transmitting antenna representing the tag-ID. Finally, the phase encoding capability is proposed. Therefore, not only the existence or the non-existence of a harmonic notch or peak used in coding the tag-ID but also the corresponding relative phase states can be considered. The introduced tags and their associated physical modulation schemes are verified using harmonic balance analysis, EM simulations and realistic testbed measurements. Lastly, the unique features which are considered in the dissertation bring a significant enhancement to the deployment of the chipless RFID system

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    Integrated Filters and Couplers for Next Generation Wireless Tranceivers

    Get PDF
    The main focus of this thesis is to investigate the critical nonlinear distortion issues affecting RF/Microwave components such as power amplifiers (PA) and develop new and improved solutions that will improve efficiency and linearity of next generation RF/Microwave mobile wireless communication systems. This research involves evaluating the nonlinear distortions in PA for different analog and digital signals which have been a major concern. The second harmonic injection technique is explored and used to effectively suppress nonlinear distortions. This method consists of simultaneously feeding back the second harmonics at the output of the power amplifier (PA) into the input of the PA. Simulated and measured results show improved linearity results. However, for increasing frequency bandwidth, the suppression abilities reduced which is a limitation for 4G LTE and 5G networks that require larger bandwidth (above 5 MHz). This thesis explores creative ways to deal with this major drawback. The injection technique was modified with the aid of a well-designed band-stop filter. The compact narrowband notch filter designed was able to suppress nonlinear distortions very effectively when used before the PA. The notch filter is also integrated in the injection technique for LTE carrier aggregation (CA) with multiple carriers and significant improvement in nonlinear distortion performance was observed. This thesis also considers maximizing efficiency alongside with improved linearity performance. To improve on the efficiency performance of the PA, the balanced PA configuration was investigated. However, another major challenge was that the couplers used in this configuration are very large in size at the desired operating frequency. In this thesis, this problem was solved by designing a compact branch line coupler. The novel coupler was simulated, fabricated and measured with performance comparable to its conventional equivalent and the coupler achieved substantial size reduction over others. The coupler is implemented in the balanced PA configuration giving improved input and output matching abilities. The proposed balanced PA is also implemented in 4G LTE and 5G wireless transmitters. This thesis provides simulation and measured results for all balanced PA cases with substantial efficiency and linearity improvements observed even for higher bandwidths (above 5 MHz). Additionally, the coupler is successfully integrated with rectifiers for improved energy harvesting performance and gave improved RF-dc conversion efficienc
    corecore