8,040 research outputs found

    Web-based haptic applications for blind people to create virtual graphs

    Get PDF
    Haptic technology has great potentials in many applications. This paper introduces our work on delivery haptic information via the Web. A multimodal tool has been developed to allow blind people to create virtual graphs independently. Multimodal interactions in the process of graph creation and exploration are provided by using a low-cost haptic device, the Logitech WingMan Force Feedback Mouse, and Web audio. The Web-based tool also provides blind people with the convenience of receiving information at home. In this paper, we present the development of the tool and evaluation results. Discussions on the issues related to the design of similar Web-based haptic applications are also given

    SoundBar: exploiting multiple views in multimodal graph browsing

    Get PDF
    In this paper we discuss why access to mathematical graphs is problematic for visually impaired people. By a review of graph understanding theory and interviews with visually impaired users, we explain why current non-visual representations are unlikely to provide effective access to graphs. We propose the use of multiple views of the graph, each providing quick access to specific information as a way to improve graph usability. We then introduce a specific multiple view system to improve access to bar graphs called SoundBar which provides an additional quick audio overview of the graph. An evaluation of SoundBar revealed that additional views significantly increased accuracy and reduced time taken in a question answering task

    Enabling audio-haptics

    Get PDF
    This thesis deals with possible solutions to facilitate orientation, navigation and overview of non-visual interfaces and virtual environments with the help of sound in combination with force-feedback haptics. Applications with haptic force-feedback, s

    Making Spatial Information Accessible on Touchscreens for Users who are Blind and Visually Impaired

    Get PDF
    Touchscreens have become a de facto standard of input for mobile devices as they most optimally use the limited input and output space that is imposed by their form factor. In recent years, people who are blind and visually impaired have been increasing their usage of smartphones and touchscreens. Although basic access is available, there are still many accessibility issues left to deal with in order to bring full inclusion to this population. One of the important challenges lies in accessing and creating of spatial information on touchscreens. The work presented here provides three new techniques, using three different modalities, for accessing spatial information on touchscreens. The first system makes geometry and diagram creation accessible on a touchscreen through the use of text-to-speech and gestural input. This first study is informed by a qualitative study of how people who are blind and visually impaired currently access and create graphs and diagrams. The second system makes directions through maps accessible using multiple vibration sensors without any sound or visual output. The third system investigates the use of binaural sound on a touchscreen to make various types of applications accessible such as physics simulations, astronomy, and video games

    Visual-Tactile Image Representation For The Visually Impaired Using Braille Device

    Get PDF
    Nowadays Internet usage is dramatically increasing all over the world and the information dissemination and acquisition is easier for sighted users. Unfortunately, visually impaired are still facing difficulties in interaction with websites. Particularly, screen reader is unable to facilitate disabled users to identify images such as basic geometric shapes. Inability to identify the shapes displayed on the screen creates restriction to interact and comprehend the content of websites for visually impaired. Thus, this project examines earlier researches and eases the web interaction of the blind people by identifying the shape of visual image converted into tactile representation using Braille device. For further investigation of the hypotheses, qualitative and quantitative method is used. The study findings are addressed to build a system that tackles the issue that screen reader is unable to address. System evaluation is executed upon producing the prototype of the system which comprises of user testing. The system is expected to improve understanding the content of webpage and enhance the interaction of visually impaired with web. Future recommendations and further findings will be discussed when system prototype milestone is fulfilled

    Tools in and out of sight : an analysis informed by Cultural-Historical Activity Theory of audio-haptic activities involving people with visual impairments supported by technology

    Get PDF
    The main purpose of this thesis is to present a Cultural-Historical Activity Theory (CHAT) based analysis of the activities conducted by and with visually impaired users supported by audio-haptic technology.This thesis covers several studies conducted in two projects. The studies evaluate the use of audio-haptic technologies to support and/or mediate the activities of people with visual impairment. The focus is on the activities involving access to two-dimensional information, such as pictures or maps. People with visual impairments can use commercially available solutions to explore static information (raised lined maps and pictures, for example). Solu-tions for dynamic access, such as drawing a picture or using a map while moving around, are more scarce. Two distinct projects were initiated to remedy the scarcity of dynamic access solutions, specifically focusing on two separate activities.The first project, HaptiMap, focused on pedestrian outdoors navigation through audio feedback and gestures mediated by a GPS equipped mobile phone. The second project, HIPP, focused on drawing and learning about 2D representations in a school setting with the help of haptic and audio feedback. In both cases, visual feedback was also present in the technology, enabling people with vision to take advantage of that modality too.The research questions addressed are: How can audio and haptic interaction mediate activ-ities for people with visual impairment? Are there features of the programming that help or hinder this mediation? How can CHAT, and specifically the Activity Checklist, be used to shape the design process, when designing audio haptic technology together with persons with visual impairments?Results show the usefulness of the Activity Checklist as a tool in the design process, and provide practical application examples. A general conclusion emphasises the importance of modularity, standards, and libre software in rehabilitation technology to support the development of the activities over time and to let the code evolve with them, as a lifelong iterative development process. The research also provides specific design recommendations for the design of the type of audio haptic systems involved

    An empirical evaluation of a graphics creation technique for blind and visually impaired individuals

    Get PDF
    The representation of pictorial data by people who are blind and sight impaired has gathered momentum with research and development; however, little research has focused on the use of a screen layout to provide people who are blind and sight impaired users with the spatial orientation to create and reuse graphics. This article contributes an approach to navigating on the screen, manipulating computer graphics, and user-defined images. The technique described in this article enables features such as zooming, grouping, and drawing by calling primitive and user-defined shapes. It enables blind people to engage in and experience drawing and art production on their own. The navigation technique gives an initiative sense of autonomy with compass directions, makes it easy to learn, efficient to manipulate shape with a the simple drawing language, and takes less time to complete with system support features. An empirical evaluation was conducted to validate the suitability of the SETUP09 technique and to evaluate the accuracy, and efficiency of the navigation and drawing techniques proposed. The drawing experiment results confirmed high accuracy (88%) and efficiency among blind and visually impaired (BVI) users

    Voice and Touch Diagrams (VATagrams) Diagrams for the Visually Impaired

    Get PDF
    If a picture is worth a thousand words would you rather read the two pages of text or simply view the image? Most would choose to view the image; however, for the visually impaired this isn’t always an option. Diagrams assist people in visualizing relationships between objects. Most often these diagrams act as a source for quickly referencing information about relationships. Diagrams are highly visual and as such, there are few tools to support diagram creation for visually impaired individuals. To allow the visually impaired the ability to share the same advantages in school and work as sighted colleagues, an accessible diagram tool is needed. A suitable tool for the visually impaired to create diagrams should allow these individuals to: 1. easily define the type of relationship based diagram to be created, 2. easily create the components of a relationship based diagram, 3. easily modify the components of a relationship based diagram, 4. quickly understand the structure of a relationship based diagram, 5. create a visual representation which can be used by the sighted, and 6. easily accesses reference points for tracking diagram components. To do this a series of prototypes of a tool were developed that allow visually impaired users the ability to read, create, modify and share relationship based diagrams using sound and gestural touches. This was accomplished by creating a series of applications that could be run on an iPad using an overlay that restricts the areas in which a user can perform gestures. These prototypes were tested for usability using measures of efficiency, effectiveness and satisfaction. The prototypes were tested with visually impaired, blindfolded and sighted participants. The results of the evaluation indicate that the prototypes contain the main building blocks that can be used to complete a fully functioning application to be used on an iPad
    corecore