2 research outputs found

    Improved EEG Event Classification Using Differential Energy

    Full text link
    Feature extraction for automatic classification of EEG signals typically relies on time frequency representations of the signal. Techniques such as cepstral-based filter banks or wavelets are popular analysis techniques in many signal processing applications including EEG classification. In this paper, we present a comparison of a variety of approaches to estimating and postprocessing features. To further aid in discrimination of periodic signals from aperiodic signals, we add a differential energy term. We evaluate our approaches on the TUH EEG Corpus, which is the largest publicly available EEG corpus and an exceedingly challenging task due to the clinical nature of the data. We demonstrate that a variant of a standard filter bank-based approach, coupled with first and second derivatives, provides a substantial reduction in the overall error rate. The combination of differential energy and derivatives produces a 24% absolute reduction in the error rate and improves our ability to discriminate between signal events and background noise. This relatively simple approach proves to be comparable to other popular feature extraction approaches such as wavelets, but is much more computationally efficient.Comment: Published in IEEE Signal Processing in Medicine and Biology Symposium. Philadelphia, Pennsylvania, US

    A Nonparametric Bayesian Approach for Spoken Term detection by Example Query

    Full text link
    State of the art speech recognition systems use data-intensive context-dependent phonemes as acoustic units. However, these approaches do not translate well to low resourced languages where large amounts of training data is not available. For such languages, automatic discovery of acoustic units is critical. In this paper, we demonstrate the application of nonparametric Bayesian models to acoustic unit discovery. We show that the discovered units are correlated with phonemes and therefore are linguistically meaningful. We also present a spoken term detection (STD) by example query algorithm based on these automatically learned units. We show that our proposed system produces a P@N of 61.2% and an EER of 13.95% on the TIMIT dataset. The improvement in the EER is 5% while P@N is only slightly lower than the best reported system in the literature.Comment: interspeech 201
    corecore