39 research outputs found

    Challenges in Dynamic Resource Allocation and Task Scheduling in Heterogeneous Clouds

    Get PDF
    Resource Allocation and Task scheduling are the most important key words in today’s dynamic cloud based applications. Task scheduling involves assigning tasks to available processors with the aim of producing minimum execution time, whereas resource allocation involves deciding on an allocation policy to allocate resources to various tasks so as to have maximum resource utilization. Algorithms used for scheduling resources for virtual machines are designed for both homogeneous and heterogeneous environments. Majority of the algorithms focus on processing ability often neglecting other features such as network bandwidth and actual resource requirements. One of the major pitfalls in cloud computing is related to optimizing the resources being allocated. Because of the uniqueness of the model, resource allocation is performed with the objective of minimizing the costs associated with it. The other challenges of resource allocation are meeting customer demands and application requirements. In this paper we will focus on the challenges faced in task scheduling and resource allocation in dynamic heterogeneous clouds

    On distributed virtual network embedding with guarantees

    Full text link
    To provide wide-area network services, resources from different infrastructure providers are needed. Leveraging the consensus-based resource allocation literature, we propose a general distributed auction mechanism for the (NP-hard) virtual network (VNET) embedding problem. Under reasonable assumptions on the bidding scheme, the proposed mechanism is proven to converge, and it is shown that the solutions guarantee a worst case efficiency of (?????) relative to the optimal solution, and that this bound is optimal, that is, no better approximation exists. Using extensive simulations, we confirm superior convergence properties and resource utilization when compared with existing distributed VNET embedding solutions, and we show how byappropriate policy design, our mechanism can be instantiated to accommodate the embedding goals of different service and infrastructure providers, resulting in an attractive and flexible resource allocation solution.This work is supported in part by the National Science Foundation under grant CNS-0963974

    On distributed virtual network embedding with guarantees

    Full text link
    To provide wide-area network services, resources from different infrastructure providers are needed. Leveraging the consensus-based resource allocation literature, we propose a general distributed auction mechanism for the (NP-hard) virtual network (VNET) embedding problem. Under reasonable assumptions on the bidding scheme, the proposed mechanism is proven to converge, and it is shown that the solutions guarantee a worst case efficiency of (?????) relative to the optimal solution, and that this bound is optimal, that is, no better approximation exists. Using extensive simulations, we confirm superior convergence properties and resource utilization when compared with existing distributed VNET embedding solutions, and we show how byappropriate policy design, our mechanism can be instantiated to accommodate the embedding goals of different service and infrastructure providers, resulting in an attractive and flexible resource allocation solution.This work is supported in part by the National Science Foundation under grant CNS-0963974

    On distributed virtual network embedding with guarantees

    Full text link
    To provide wide-area network services, resources from different infrastructure providers are needed. Leveraging the consensus-based resource allocation literature, we propose a general distributed auction mechanism for the (NP-hard) virtual network (VNET) embedding problem. Under reasonable assumptions on the bidding scheme, the proposed mechanism is proven to converge, and it is shown that the solutions guarantee a worst-case efficiency of (1-(1/e)) relative to the optimal node embedding, or VNET embedding if virtual links are mapped to exactly one physical link. This bound is optimal, that is, no better polynomial-time approximation algorithm exists, unless P=NP. Using extensive simulations, we confirm superior convergence properties and resource utilization when compared to existing distributed VNET embedding solutions, and we show how by appropriate policy design, our mechanism can be instantiated to accommodate the embedding goals of different service and infrastructure providers, resulting in an attractive and flexible resource allocation solution.CNS-0963974 - National Science Foundationhttp://www.cs.bu.edu/fac/matta/Papers/ToN-CAD.pdfAccepted manuscrip

    VINEA: a policy-based virtual network embedding architecture

    Full text link
    Network virtualization has enabled new business models by allowing infrastructure providers to lease or share their physical network. To concurrently run multiple customized virtual network services, such infrastructure providers need to run a virtual network embedding protocol. The virtual network embedding is the (NP-hard) problem of matching constrained virtual networks onto the physical network. We present the design and implementation of a policy-based architecture for the virtual network embedding problem. By policy, we mean a variant aspect of any of the (invariant) embedding mechanisms: resource discovery, virtual network mapping, and allocation on the physical infrastructure. Our architecture adapts to different scenarios by instantiating appropriate policies, and has bounds on embedding efficiency and on convergence embedding time, over a single provider, or across multiple federated providers. The performance of representative novel policy configurations are compared over a prototype implementation. We also present an object model as a foundation for a protocol specification, and we release a testbed to enable users to test their own embedding policies, and to run applications within their virtual networks. The testbed uses a Linux system architecture to reserve virtual node and link capacities.National Science Foundation (CNS-0963974
    corecore