9,888 research outputs found

    Building a Truly Distributed Constraint Solver with JADE

    Full text link
    Real life problems such as scheduling meeting between people at different locations can be modelled as distributed Constraint Satisfaction Problems (CSPs). Suitable and satisfactory solutions can then be found using constraint satisfaction algorithms which can be exhaustive (backtracking) or otherwise (local search). However, most research in this area tested their algorithms by simulation on a single PC with a single program entry point. The main contribution of our work is the design and implementation of a truly distributed constraint solver based on a local search algorithm using Java Agent DEvelopment framework (JADE) to enable communication between agents on different machines. Particularly, we discuss design and implementation issues related to truly distributed constraint solver which might not be critical when simulated on a single machine. Evaluation results indicate that our truly distributed constraint solver works well within the observed limitations when tested with various distributed CSPs. Our application can also incorporate any constraint solving algorithm with little modifications.Comment: 7 page

    In-Network Outlier Detection in Wireless Sensor Networks

    Full text link
    To address the problem of unsupervised outlier detection in wireless sensor networks, we develop an approach that (1) is flexible with respect to the outlier definition, (2) computes the result in-network to reduce both bandwidth and energy usage,(3) only uses single hop communication thus permitting very simple node failure detection and message reliability assurance mechanisms (e.g., carrier-sense), and (4) seamlessly accommodates dynamic updates to data. We examine performance using simulation with real sensor data streams. Our results demonstrate that our approach is accurate and imposes a reasonable communication load and level of power consumption.Comment: Extended version of a paper appearing in the Int'l Conference on Distributed Computing Systems 200

    The Impact of RDMA on Agreement

    Full text link
    Remote Direct Memory Access (RDMA) is becoming widely available in data centers. This technology allows a process to directly read and write the memory of a remote host, with a mechanism to control access permissions. In this paper, we study the fundamental power of these capabilities. We consider the well-known problem of achieving consensus despite failures, and find that RDMA can improve the inherent trade-off in distributed computing between failure resilience and performance. Specifically, we show that RDMA allows algorithms that simultaneously achieve high resilience and high performance, while traditional algorithms had to choose one or another. With Byzantine failures, we give an algorithm that only requires n≥2fP+1n \geq 2f_P + 1 processes (where fPf_P is the maximum number of faulty processes) and decides in two (network) delays in common executions. With crash failures, we give an algorithm that only requires n≥fP+1n \geq f_P + 1 processes and also decides in two delays. Both algorithms tolerate a minority of memory failures inherent to RDMA, and they provide safety in asynchronous systems and liveness with standard additional assumptions.Comment: Full version of PODC'19 paper, strengthened broadcast algorith

    Parallel symbolic state-space exploration is difficult, but what is the alternative?

    Full text link
    State-space exploration is an essential step in many modeling and analysis problems. Its goal is to find the states reachable from the initial state of a discrete-state model described. The state space can used to answer important questions, e.g., "Is there a dead state?" and "Can N become negative?", or as a starting point for sophisticated investigations expressed in temporal logic. Unfortunately, the state space is often so large that ordinary explicit data structures and sequential algorithms cannot cope, prompting the exploration of (1) parallel approaches using multiple processors, from simple workstation networks to shared-memory supercomputers, to satisfy large memory and runtime requirements and (2) symbolic approaches using decision diagrams to encode the large structured sets and relations manipulated during state-space generation. Both approaches have merits and limitations. Parallel explicit state-space generation is challenging, but almost linear speedup can be achieved; however, the analysis is ultimately limited by the memory and processors available. Symbolic methods are a heuristic that can efficiently encode many, but not all, functions over a structured and exponentially large domain; here the pitfalls are subtler: their performance varies widely depending on the class of decision diagram chosen, the state variable order, and obscure algorithmic parameters. As symbolic approaches are often much more efficient than explicit ones for many practical models, we argue for the need to parallelize symbolic state-space generation algorithms, so that we can realize the advantage of both approaches. This is a challenging endeavor, as the most efficient symbolic algorithm, Saturation, is inherently sequential. We conclude by discussing challenges, efforts, and promising directions toward this goal
    • …
    corecore