44,885 research outputs found

    A simulation approach to determine the probability of demand during lead-time when demand distributed normal and lead-time distributed gamma

    Get PDF
    Globalization and advances in information and production technologies make inventory management can be very difficult even for organizations with simple structures. The complexities of inventory management increase in multi-stage networks, where inventory appears in multiple tiers of locations. Due to massive practical applications in the reality of the world, an efficient inventory system policy whether single location or multi-stage location will avoid falling into overstock inventory or under stock inventory. However, the optimality of inventory and allocation policies in a supply chain is still unknown for most types of multi-stage systems. Hence, this paper aims to determine the probability distribution function of demand during lead-time by using a simulation model when the demand distributed normal and the lead-time distributed gamma. The simulation model showed a new probability distribution function of demand during lead-time in the considered inventory system, which is, Generalized Gamma distribution with 4 parameters. This probability distribution function makes the mathematical expression more difficult to build the inventory model especially in multistage or multi-echelon inventory model

    A Distributed Retail Beer Game for Decision Support System

    Get PDF
    AbstractA beer game is a simulation tool for the study of Supply Chain Management (SCM) issues used by the students of MIT. It has been augmented over the time to make it industry ready for decision making and risk management. Apart from smooth information and material flow among the distributed partners excess inventory is still an issue to control. In this paper, an attempt is made to improvise the Beer Game model to a Petri Net model for risk analysis and decision making. A successful simulation of the Petri Net model on efficient redistribution of stock towards inventory management is presented in this paper. The paper also establishes that the analysis is done in polynomial time

    A Simulation Approach to Determine the Probability of Demand during Lead-Time When Demand Distributed Normal and Lead-Time Distributed Gamma

    Get PDF
    Globalization and advances in information and production technologies make inventory management can be very difficult even for organizations with simple structures. The complexities of inventory management increase in multi-stage networks, where inventory appears in multiple tiers of locations. Due to massive practical applications in the reality of the world, an efficient inventory system policy whether single location or multi-stage location will avoid falling into overstock inventory or under stock inventory. However, the optimality of inventory and allocation policies in a supply chain is still unknown for most types of multi-stage systems. Hence, this paper aims to determine the probability distribution function of demand during lead-time by using a simulation model when the demand distributed normal and the lead-time distributed gamma. The simulation model showed a new probability distribution function of demand during lead-time in the considered inventory system, which is, Generalized Gamma distribution with 4 parameters. This probability distribution function makes the mathematical expression more difficult to build the inventory model especially in multistage or multi-echelon inventory model

    Enhancing Agility of Supply Chains Using Stochastic, Discrete Event and Physical Simulation Models

    Get PDF
    Managing supply chains in today’s distributed manufacturing environment has become more complex. To remain competitive in today’s global marketplace, organizations must streamline their supply chains. The practice of coordinating the design, procurement, flow of goods, services, information and finances, from raw material flows to parts supplier to manufacturer to distributor to retailer and finally to consumer requires synchronized planning and execution. Efficient and effective supply chain management assists an organization in getting the right goods and services to the place needed at the right time, in the proper quantity and at acceptable cost. Managing this process involves developing and overseeing relationships with suppliers and customers, controlling inventory, and forecasting demand, all requiring constant feedback from every link in the chain. First, a survey of existing stochastic models is presented. Base Stock Model and Q (r) models are applied to three tier single-product supply chains to calculate order quantities and reorder point at various locations within the supply chain. A computer based discrete event simulation model is created to study the three tier supply chain and to validate the results from the stochastic models. Results indicate that agility of supply chains can be enhanced by using the stochastic models to calculate order quantities and reorder points. In addition to reducing the total cost of inventory, probability of backorder and customer dissatisfaction is minimized. Results are further validated with physical simulations. Both computer based simulation and physical simulation demonstrate the improvement in the agility of the supply chain with reduced cost for inventory

    An Analysis of Multi-Agent Reinforcement Learning for Decentralized Inventory Control Systems

    Full text link
    Most solutions to the inventory management problem assume a centralization of information that is incompatible with organisational constraints in real supply chain networks. The inventory management problem is a well-known planning problem in operations research, concerned with finding the optimal re-order policy for nodes in a supply chain. While many centralized solutions to the problem exist, they are not applicable to real-world supply chains made up of independent entities. The problem can however be naturally decomposed into sub-problems, each associated with an independent entity, turning it into a multi-agent system. Therefore, a decentralized data-driven solution to inventory management problems using multi-agent reinforcement learning is proposed where each entity is controlled by an agent. Three multi-agent variations of the proximal policy optimization algorithm are investigated through simulations of different supply chain networks and levels of uncertainty. The centralized training decentralized execution framework is deployed, which relies on offline centralization during simulation-based policy identification, but enables decentralization when the policies are deployed online to the real system. Results show that using multi-agent proximal policy optimization with a centralized critic leads to performance very close to that of a centralized data-driven solution and outperforms a distributed model-based solution in most cases while respecting the information constraints of the system

    Modeling Multilevel Supply Chain Systems to Optimize Order Quantities and Order Points Through Mathematical Models, Discrete Event simulation and Physical Simulations

    Get PDF
    Managing supply chains in today\u27s distributed manufacturing environment has become more complex. To remain competitive in today\u27s global marketplace, organizations must streamline their supply chains. The practice of coordinating the design, procurement, flow of goods, services, information and finances, from raw material flows to parts supplier to manufacturer to distributor to retailer and finally to consumer requires synchronized planning and execution. Efficient and effective supply chain management assists an organization in getting the right goods and services to the place needed at the right time, in the proper quantity and at acceptable cost. Managing this process involves developing and overseeing relationships with suppliers and customers, controlling inventory, and forecasting demand, all requiring constant feedback from every link in the chain. Base Stock Model and (Q, r) models are applied to three tier single-product supply chain to calculate order quantities and reorder point at various locations within the supply chain. Two physical simulations are designed to study the above supply chain. One of these simulations is specifically designed to validate the results from Base Stock model. A computer based discrete event simulation model is created to study the three tier supply chain and to validate the results of the Base Stock model. Results from these mathematical models, physical simulation models and computer based simulation model are compared. In addition, the physical simulation model studies the impact of lean implementation through various performance metrics and the results demonstrate the power of physical simulations as a pedagogical tool for training. Contribution of present work in understanding the supply chain integration is discussed and future research topics are presented

    Modelling very large complex systems using distributed simulation: A pilot study in a healthcare setting

    Get PDF
    Modern manufacturing supply chains are hugely complex and like all stochastic systems, can benefit from simulation. Unfortunately supply chain systems often result in massively large and complicated models, which even today’s powerful computers cannot run efficiently. This paper presents one possible solution - distributed simulation. This pilot study is implemented in a healthcare setting, the supply chain of blood from donor to recipient
    • …
    corecore