5 research outputs found

    Infrastructure Enabled Autonomy Acting as an Intelligent Transportation System for Autonomous Cars

    Get PDF
    Autonomous cars have the ability to increase safety, efficiency, and speed of travel. Yet many see a point at which stand-alone autonomous agents populate an area too densely, creating increased risk - particularly when each agent is operating and making decisions on its own and in its own self-interest. The problem at hand then becomes how to best implement and scale this new technology and structure in such a way that it can keep pace with a rapidly changing world, benefitting not just individuals, but societies. This research approaches the challenge by developing an intelligent transportation system that relies on an infrastructure. The solution lies in the removal of sensing and high computational tasks from the vehicles, allowing static ground stations with multi sensor-sensing packs to sense the surrounding environment and direct the vehicles safely from start to goal. On a high level, the Infrastructure Enabled Autonomy system (IEA) uses less hardware, bandwidth, energy, and money to maintain a controlled environment for a vehicle to operate when in highly congested environments. Through the development of background detection algorithms, this research has shown the advantage of static MSSPs analyzing the same environment over time, and carrying an increased reliability from fewer unknowns about the area of interest. It was determined through testing that wireless commands can sufficiently operate a vehicle in a limited agent environment, and do not bottleneck the system. The horizontal trial outcome illustrated that a switching MSSP state of the IEA system showed similar loop time, but a greatly increased standard deviation. However, after performing a t-test with a 95 percent confidence interval, the static and switching MSSP state trials were not significantly different. The final testing quantified the cross track error. For a straight path, the vehicle being controlled by the IEA system had a cross track error less than 12 centimeters, meaning between the controller, network lag, and pixel error, the system was robust enough to generate stable control of the vehicle with minimal error

    Infrastructure Enabled Autonomy Acting as an Intelligent Transportation System for Autonomous Cars

    Get PDF
    Autonomous cars have the ability to increase safety, efficiency, and speed of travel. Yet many see a point at which stand-alone autonomous agents populate an area too densely, creating increased risk - particularly when each agent is operating and making decisions on its own and in its own self-interest. The problem at hand then becomes how to best implement and scale this new technology and structure in such a way that it can keep pace with a rapidly changing world, benefitting not just individuals, but societies. This research approaches the challenge by developing an intelligent transportation system that relies on an infrastructure. The solution lies in the removal of sensing and high computational tasks from the vehicles, allowing static ground stations with multi sensor-sensing packs to sense the surrounding environment and direct the vehicles safely from start to goal. On a high level, the Infrastructure Enabled Autonomy system (IEA) uses less hardware, bandwidth, energy, and money to maintain a controlled environment for a vehicle to operate when in highly congested environments. Through the development of background detection algorithms, this research has shown the advantage of static MSSPs analyzing the same environment over time, and carrying an increased reliability from fewer unknowns about the area of interest. It was determined through testing that wireless commands can sufficiently operate a vehicle in a limited agent environment, and do not bottleneck the system. The horizontal trial outcome illustrated that a switching MSSP state of the IEA system showed similar loop time, but a greatly increased standard deviation. However, after performing a t-test with a 95 percent confidence interval, the static and switching MSSP state trials were not significantly different. The final testing quantified the cross track error. For a straight path, the vehicle being controlled by the IEA system had a cross track error less than 12 centimeters, meaning between the controller, network lag, and pixel error, the system was robust enough to generate stable control of the vehicle with minimal error

    Response of Autonomous Vehicles to Emergency Response Vehicles (RAVEV)

    Get PDF
    69A3551747115The objective of this project was to explore how an autonomous vehicle identifies and safely responds to emergency vehicles using visual and other onboard sensors. Emergency vehicles can include police, fire, hospital and other responders\u2019 vehicles. An autonomous vehicle in the presence of an emergency vehicle must have the ability to accurately sense its surroundings in real-time and be able to safely yield to the emergency vehicle. This project used machine learning algorithms to identify the presence of emergency vehicles, mainly through onboard vision, and then maneuver an in-path non-emergency autonomous vehicle to a stop on the curbside. Two image processing frameworks were tested to identify the best combination of vision-based detection algorithms, and a novel lateral control algorithm was developed for maneuvering the autonomous vehicle

    Strategic Infrastructure Planning for Autonomous Vehicles

    Get PDF
    Compared with conventional human-driven vehicles (HVs), AVs have various potential benefits, such as increasing road capacity and lowering vehicular fuel consumption and emissions. Road infrastructure management, adaptation, and upgrade plays a key role in promoting the adoption and benefit realization of AVs.This dissertation investigated several strategic infrastructure planning problems for AVs. First, it studied the potential impact of AVs on the congestion patterns of transportation networks. Second, it investigated the strategic planning problem for a new form of managed lanes for autonomous vehicles, designated as autonomous-vehicle/toll lanes, which are freely accessible to autonomous vehicles while allowing human-driven vehicles to utilize the lanes by paying a toll.This new type of managed lanes has the potential of increasing traffic capacity and fully utilizing the traffic capacity by selling redundant road capacity to HVs. Last, this dissertation studied the strategic infrastructure planning problem for an infrastructure-enabled autonomous driving system. The system combines vehicles and infrastructure in the realization of autonomous driving. Equipped with roadside sensor and control systems, a regular road can be upgraded into an automated road providing autonomous driving service to vehicles. Vehicles only need to carry minimum required on-board devices to enable their autonomous driving on an automated road. The costs of vehicles can thus be significantly reduced
    corecore