41,316 research outputs found

    A Distributed Algorithm for Web Content Replication

    Full text link
    Abstract—Web caching and replication techniques increase accessibility of Web contents and reduce Internet bandwidth requirements. In this paper, we are considering the replica placement problem in a distributed replication group. The replication group consists of servers dedicating certain amount of memory for replicating objects. The replica placement problem is to place the replica at the servers within the replication group such that the access time over all objects and servers is minimized. We design a distributed 2-approximation algorithm that solves this optimization problem. We show that the communication and computational complexity of the algorithm is polynomial in the number of servers and objects. We perform simulation experiments to investigate the performance of our algorithm. I

    A Highly Available Cluster of Web Servers with Increased Storage Capacity

    Get PDF
    Ponencias de las Decimoséptimas Jornadas de Paralelismo de la Universidad de Castilla-La Mancha celebradas el 18,19 y 20 de septiembre de 2006 en AlbaceteWeb servers scalability has been traditionally solved by improving software elements or increasing hardware resources of the server machine. Another approach has been the usage of distributed architectures. In such architectures, usually, file al- location strategy has been either full replication or full distribution. In previous works we have showed that partial replication offers a good balance between storage capacity and reliability. It offers much higher storage capacity while reliability may be kept at an equivalent level of that from fully replicated solutions. In this paper we present the architectural details of Web cluster solutions adapted to partial replication. We also show that partial replication does not imply a penalty in performance over classical fully replicated architectures. For evaluation purposes we have used a simulation model under the OMNeT++ framework and we use mean service time as a performance comparison metric.Publicad

    A Literature Survey of Cooperative Caching in Content Distribution Networks

    Full text link
    Content distribution networks (CDNs) which serve to deliver web objects (e.g., documents, applications, music and video, etc.) have seen tremendous growth since its emergence. To minimize the retrieving delay experienced by a user with a request for a web object, caching strategies are often applied - contents are replicated at edges of the network which is closer to the user such that the network distance between the user and the object is reduced. In this literature survey, evolution of caching is studied. A recent research paper [15] in the field of large-scale caching for CDN was chosen to be the anchor paper which serves as a guide to the topic. Research studies after and relevant to the anchor paper are also analyzed to better evaluate the statements and results of the anchor paper and more importantly, to obtain an unbiased view of the large scale collaborate caching systems as a whole.Comment: 5 pages, 5 figure

    Distributed Selfish Coaching

    Full text link
    Although cooperation generally increases the amount of resources available to a community of nodes, thus improving individual and collective performance, it also allows for the appearance of potential mistreatment problems through the exposition of one node's resources to others. We study such concerns by considering a group of independent, rational, self-aware nodes that cooperate using on-line caching algorithms, where the exposed resource is the storage at each node. Motivated by content networking applications -- including web caching, CDNs, and P2P -- this paper extends our previous work on the on-line version of the problem, which was conducted under a game-theoretic framework, and limited to object replication. We identify and investigate two causes of mistreatment: (1) cache state interactions (due to the cooperative servicing of requests) and (2) the adoption of a common scheme for cache management policies. Using analytic models, numerical solutions of these models, as well as simulation experiments, we show that on-line cooperation schemes using caching are fairly robust to mistreatment caused by state interactions. To appear in a substantial manner, the interaction through the exchange of miss-streams has to be very intense, making it feasible for the mistreated nodes to detect and react to exploitation. This robustness ceases to exist when nodes fetch and store objects in response to remote requests, i.e., when they operate as Level-2 caches (or proxies) for other nodes. Regarding mistreatment due to a common scheme, we show that this can easily take place when the "outlier" characteristics of some of the nodes get overlooked. This finding underscores the importance of allowing cooperative caching nodes the flexibility of choosing from a diverse set of schemes to fit the peculiarities of individual nodes. To that end, we outline an emulation-based framework for the development of mistreatment-resilient distributed selfish caching schemes. Our framework utilizes a simple control-theoretic approach to dynamically parameterize the cache management scheme. We show performance evaluation results that quantify the benefits from instantiating such a framework, which could be substantial under skewed demand profiles.National Science Foundation (CNS Cybertrust 0524477, CNS NeTS 0520166, CNS ITR 0205294, EIA RI 0202067); EU IST (CASCADAS and E-NEXT); Marie Curie Outgoing International Fellowship of the EU (MOIF-CT-2005-007230

    DOH: A Content Delivery Peer-to-Peer Network

    Get PDF
    Many SMEs and non-pro¯t organizations suŸer when their Web servers become unavailable due to °ash crowd eŸects when their web site becomes popular. One of the solutions to the °ash-crowd problem is to place the web site on a scalable CDN (Content Delivery Network) that replicates the content and distributes the load in order to improve its response time. In this paper, we present our approach to building a scalable Web Hosting environment as a CDN on top of a structured peer-to-peer system of collaborative web-servers integrated to share the load and to improve the overall system performance, scalability, availability and robustness. Unlike clusterbased solutions, it can run on heterogeneous hardware, over geographically dispersed areas. To validate and evaluate our approach, we have developed a system prototype called DOH (DKS Organized Hosting) that is a CDN implemented on top of the DKS (Distributed K-nary Search) structured P2P system with DHT (Distributed Hash table) functionality [9]. The prototype is implemented in Java, using the DKS middleware, the Jetty web-server, and a modi¯ed JavaFTP server. The proposed design of CDN has been evaluated by simulation and by evaluation experiments on the prototype

    Smart PIN: utility-based replication and delivery of multimedia content to mobile users in wireless networks

    Get PDF
    Next generation wireless networks rely on heterogeneous connectivity technologies to support various rich media services such as personal information storage, file sharing and multimedia streaming. Due to users’ mobility and dynamic characteristics of wireless networks, data availability in collaborating devices is a critical issue. In this context Smart PIN was proposed as a personal information network which focuses on performance of delivery and cost efficiency. Smart PIN uses a novel data replication scheme based on individual and overall system utility to best balance the requirements for static data and multimedia content delivery with variable device availability due to user mobility. Simulations show improved results in comparison with other general purpose data replication schemes in terms of data availability

    Cooperative Caching for Multimedia Streaming in Overlay Networks

    Get PDF
    Traditional data caching, such as web caching, only focuses on how to boost the hit rate of requested objects in caches, and therefore, how to reduce the initial delay for object retrieval. However, for multimedia objects, not only reducing the delay of object retrieval, but also provisioning reasonably stable network bandwidth to clients, while the fetching of the cached objects goes on, is important as well. In this paper, we propose our cooperative caching scheme for a multimedia delivery scenario, supporting a large number of peers over peer-to-peer overlay networks. In order to facilitate multimedia streaming and downloading service from servers, our caching scheme (1) determines the appropriate availability of cached stream segments in a cache community, (2) determines the appropriate peer for cache replacement, and (3) performs bandwidth-aware and availability-aware cache replacement. By doing so, it achieves (1) small delay of stream retrieval, (2) stable bandwidth provisioning during retrieval session, and (3) load balancing of clients' requests among peers
    • 

    corecore